Browse > Article
http://dx.doi.org/10.5303/JKAS.2007.40.4.157

THE UNUSUAL STELLAR MASS FUNCTION OF STARBURST CLUSTERS  

Dib, Sami (Kavli Institute for Theoretical Physics, University of California)
Publication Information
Journal of The Korean Astronomical Society / v.40, no.4, 2007 , pp. 157-160 More about this Journal
Abstract
I present a model to explain the mass segregation and shallow mass functions observed in the central parts of starburst stellar clusters. The model assumes that the initial pre-stellar cores mass function resulting from the turbulent fragmentation of the proto-cluster cloud is significantly altered by the cores coalescence before they collapse to form stars. With appropriate, yet realistic parameters, this model based on the competition between cores coalescence and collapse reproduces the mass spectra of the well studied Arches cluster. Namely, the slopes at the intermediate and high mass ends, as well as the peculiar bump observed at $6M_{\bigodot}$. This coalescence-collapse process occurs on a short timescale of the order of the free fall time of the proto-cluster cloud (i.e., a few $10^4$ years), suggesting that mass segregation in Arches and similar clusters is primordial. The best fitting model implies the total mass of the Arches cluster is $1.45{\times}10^5M_{\bigodot}$, which is slightly higher than the often quoted, but completeness affected, observational value of a few $10^4M_{\bigodot}$. The model implies a star formation efficiency of ${\sim}30$ percent which implies that the Arches cluster is likely to a gravitationally bound system.
Keywords
turbulence; ISM: clouds; Galaxy: centre; open clusters and associations; individual:Arches; galaxies:star clusters;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Salpeter, E. E. 1955, The Luminosity function and stellar evolution, ApJ, 121, 161   DOI
2 Stolte, A., Grebel, E. K., Brandner, W., & Figer, D. F. 2002 The mass function of the Arches cluster from Gemini adaptive optics data, A&A, 394, 459   DOI   ScienceOn
3 Stolte, A., Brandner, W., Grebel, E. K., Lenzen, R., Lagrange, A.-M. 2005, The Arches cluster: evidence for a truncated mass function?, ApJ, 628, L113   DOI
4 Sung, H., & Bessel, M. S. 2004, The initial mass function and stellar content of NGC 3603, AJ, 127, 1014   DOI   ScienceOn
5 Yang, Y., Park, H. S., Lee, M. G., & Lee, S. G. 2002, Gemini near-IR photometry of the Arches cluster near the galactic center, JKAS, 35, 131
6 Andersen, M., Zinnecker, H., Moneti, A., McGaughrean, M. J., Brandl, B., Brandner, W., Meylan, G., & Hunter, D. 2007, The low mass IMf in the 30 Doradus starburst cluster, ApJ, submitted
7 Dib, S., Kim, J., & Shadmehri, M. 2007a, The origin of the Arches stellar cluster mass function, MNRAS, 381, L40   DOI   ScienceOn
8 Dib, S., Shadmehri, M., Maheswar, G., Kim, J. & Henning, T., 2007b, in Massive Star Formation: Observations Confront Theory, arXiv:0710.3969, ASP Conf. Series
9 Dib, S., Kim, J., Vazquez-Sernadeni, E., Burkert, A., & Shadmehri, M. 2007, The virial balance of clumps and cores in molecular clouds, ApJ, 661, 262   DOI
10 Figer, D. F., Kim, S. S., Morris, M., Serabyn, E., Rich, R., & McLean, I. S. 1999, Hubble space telescope/NICMOS observations of massive stellar clusters near the galactic center, ApJ, 525, 750   DOI
11 Geyer, M., & Burkert, A. 2001, The effect of gas loss on the formation of bound stellar clusters, MNRAS, 323, 988   DOI   ScienceOn
12 Harayama, Y., Eisenhauer, F., & Martins, F. 2007, The IMF of the massive star-forming region NGC 3603 from NIR AO observations, ApJ, accepted, arXiv:0710.2882
13 Kim, S. S., Figer, D. F., Kudritzki, R. P., & Najarro, F. 2006, The Arches cluster mass function, ApJ, 653, L133   DOI
14 Matzner, C. D., & McKee, C. F. 2000, Efficiencies of low-mass star and star cluster formation ApJ, 545, 364
15 Padoan, P., & Nordlund, A. 2002, The stellar initial mass function from turbulent fragmentation, ApJ, 576, 870   DOI