Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.6.1.20

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model  

Kim, Boram (National Meteorological Satellite Center)
Shin, Inchul (National Meteorological Satellite Center)
Chung, Chu-Yong (National Meteorological Satellite Center)
Cheong, Seonghoon (National Meteorological Satellite Center)
Publication Information
Korean Journal of Remote Sensing / v.34, no.6_1, 2018 , pp. 1101-1117 More about this Journal
Abstract
The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.
Keywords
clear sky radiance; HIMAWARI-8/AHI; observation minus background; RTTOV; KMA NWP model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn, M.H., 2014. Competing for the Responsibility of the Operational Meteorological Satellite Program: After the Launch of TIROS in 1960, Atmosphere, 24(2): 265-266 (in Korean with English abstract).   DOI
2 Auligne, T. and A.P. McNally, 2007. Interaction between bias correction and quality control, Quarterly Journal of the Royal Meteorological Society, 133(624): 643-653.   DOI
3 Auligne, T., A.P. McNally, and D.P. Dee, 2007. Adaptive bias correction for satellite data in a numerical weather prediction system, Quarterly Journal of the Royal Meteorological Society, 133(624): 631-642.   DOI
4 Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shimoji, Y. Sumida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, and R. Yoshida, 2016. An introduction to Himawari-8/9-Japan's new-generation geostationary meteorological satellites, Journal of the Meteorological Society of Japan, 94(2): 151-183.   DOI
5 ECMWF, 2015. A practical guide to IR and MW radiative transfer using the RTTOV model, http://www.ecmwf.int/sites/default/files/safrt_15.pdf, Accessed on Dec. 13, 2018.
6 EUMETSAT, 2015. Clear Sky Radiance: Product Guide (EUM/TSS/MAN/14/786411, v3, 2 September 2015), https://www.eumetsat.int/website/home/Data/TechnicalDocuments/index.html, Accessed on Jan. 15, 2018.
7 Harris, B.A. and G. Kelly, 2001. A satellite radiancebias correction scheme for data assimilation, Quarterly Journal of the Royal Meteorological Society, 127(574): 1435-1468.
8 Hocking, J., P. Rayer, D. Rundle, R. Saunders, M. Matricardi, A. Geer, P. Brunel, and J. Vidot, 2015. RTTOV v11 Users Guide, EUMETSAT, NWP SAF report, 1-68.
9 Imai, T. and D. Uesawa, 2016. Clear Sky Radiance (CSR) product derived from Himawari-8 data, MSC Technical Note, 61: 53-58.
10 Just, D., R. Gutierrez, F. Roveda, and T. Steenbergen, 2014. Meteosat third generation imager: simulation of the flexible combined imager instrument chain, International Society for Optics and Photonics, 9241, doi:10.1117/12.2066872.   DOI
11 KMA/NMSC, 2012. CSR: Clear Sky Radiance Algorithm Theoretical Basis Document (CSR-v1.0), NMSC/SCI/ATBD/CSR, Issue 1, rev0, 1-12 (in Korean).
12 Kopken, C., J.-N. Thepaut, and G. Kelly, 2003. Assimilation of geostationary WV radiances from GOES and Meteosat at ECMWF, Research Report, 14, Eumetsat/ECMWF Fellowship Program, Reading, UK.
13 Kopken, C., G. Kelly, and J.N. Thepaut, 2004. Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast impact, Quarterly Journal of the Royal Meteorological Society, 130(601): 2277-2292.   DOI
14 Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 1988. Numerical recipes in C, Cambridge University Press, Cambridge, UK, pp. 123-128.
15 Kramar, M., A. Ignato, B. Petrenko, Y. Kihai, and P. Dash, 2016. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system, In Ocean Sensing and Monitoring VIII, International Society for Optics and Photonics, 9827.
16 Lee, S.H., B.Y. Kim, K.T. Lee, I.S. Zo, H.S. Jung, and S.H. Rim, 2018. Retrieval of Reflected Shortwave Radiation at the Top of the Atmosphere Using Himawari-8/AHI Data, Remote Sensing, 10(2): 213.   DOI
17 Lee, S., J.H. Kim, J.H. Kang, and H.W. Chun, 2013. Development of pre-processing and bias correction modules for AMSU-A satellite data in the KIAPS observation processing system, Atmosphere, 23(4): 453-470 (in Korean with English abstract).   DOI
18 Schreiner, A.J., T.J. Schmit, C. Kopken, X. Su, C. Holland, and J.A. Jung, 2003. Introducing the GOES imager Clear-Sky Brightness Temperature (CSBT) product, Proc. of 12th Conference On Satellite Meteorology and Oceanography, Long Beach, CA, Feb. 9-13, pp. 4-23.
19 Schmit, T.J., M.M. Gunshor, W.P. Menzel, J.J. Gurka, J. Li, and A.S. Bachmeier, 2005. Introducing the next-generation Advanced Baseline Imager on GOES-R, Bulletin of the American Meteorological Society, 86(8): 1079-1096.   DOI
20 Seemann, S.W., E.E. Borbas, R.O. Knuteson, G.R. Stephenson, and H.L. Huang, 2008. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements, Journal of Applied Meteorology and Climatology, 47(1): 108-123.   DOI
21 Uesawa, D., 2009. Clear sky radiance (CSR) product from MTSAT-1R, MSC Technical Note, 52: 39-48.
22 Shang, H., L. Chen, H. Letu, M. Zhao, S. Li, and S. Bao, 2017. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China, Journal of Geophysical Research: Atmospheres, 122(6): 3528-3543.   DOI
23 Szyndel, M.D.E., G. Kelly, and J.N. Thepaut, 2005. Evaluation of potential benefit of assimilation of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses, Atmospheric Science Letters, 6(2): 105-111.   DOI
24 Trigo, I.F. and P. Viterbo, 2003. Clear-sky window channel radiances: A comparison between observations and the ECMWF model, Journal of Applied Meteorology, 42(10): 1463-1479.   DOI
25 Waller, J.A., S.P. Ballard, S.L. Dance, N.K. Nichols, and D. Simonin, 2016. Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minusbackground and observation-minus-analysis statistics, Remote Sensing, 8(7): 581.   DOI
26 Weston, P., 2011. Progress towards the Implementation of Correlated Observation Errors in 4D-Var, Forecasting Research technical Report 560, Exeter, UK.
27 Wickramasinghe, C.H., S. Jones, K. Reinke, and L. Wallace, 2016. Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8, Remote Sensing, 8(11): 932.   DOI
28 Yang, J., Z. Zhang, C. Wei, F. Lu, and Q. Guo, 2017. Introducing the new generation of Chinese geostationary weather satellites FengYun 4 (FY-4), Bulletin of the American Meteorological Society, 98(8): 1637-1658.   DOI