• Title/Summary/Keyword: 63Sn-37Pb

Search Result 21, Processing Time 0.029 seconds

Electromigration Behavior in the 63Sn-37Pb Solder Strip (63Sn-37Pb 솔더 스트립에서의 Electromigration 거동)

  • Lim Seung-Hyun;Choi Jae-Hoon;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.53-58
    • /
    • 2004
  • To facilitate the observation of the electromigration of 63Sn-37Pb eutectic solder, strip-type samples were fabricated by solder evaporation. The electromigration test for the 63Sn-37Pb solder strip was conducted at temperatures of $80{\sim}150^{\circ}C$ and the current densities of $1{\times}10^4{\sim}1{\times}10^5\;A/cm^2$. With increasing temperature and the current density, mean-time-to-failure(MTTF) decreased due to the formation of hillock and void in the solder strip. The activation energy for the electromigration in the 63Sn-37Pb solder strip was analyzed as $0.16{\sim}0.5\;eV$ using Black's equation.

  • PDF

Microstructure Characterization of the Solders Deposited by Thermal Evaporation for Flip Chip Bonding (진공 증발법에 의해 제조된 플립 칩 본딩용 솔더의 미세 구조분석)

  • 이충식;김영호;권오경;한학수;주관종;김동구
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.67-76
    • /
    • 1995
  • The microstructure of 95wt.%Pb/5wt.%Sn and 63wt.%Sn/37wt.%Pb solders for flip chip bonding process has been characterized. Solders were deposited by thermal evaporation and reflowed in the conventional furnace or by rapid thermal annealing(RTA) process. As-deposited films show columnar structure. The microstructure of furnace cooled 63Sn/37Pb solder shows typical lamellar form, but that of RTA treated solder has the structure showing an uniform dispersion of Pb-rich phase in Sn matrix. The grain size of 95Pb/5Sn solder reflowed in the furnace is about $5\mu\textrm{m}$, but the grain size of RTA treated solder is too small to be observed. The microstructure in 63Sn/37Pb solder bump shows the segregation of Pb phase in the Sn rich matrix regardless of reflowing method. The 63Sn/37Pb solder bump formed by RTA process shows more uniform microstructure. These result are related to the heat dissipation in the solder bump.

  • PDF

Effects of Fatigue Strength by Solder Ball Composition (솔더볼 조성에 의한 피로강도의 영향)

  • 김경수;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder composition on the ball fatigue strength for BGA (Ball Grid Array) packaging. The test pieces are assembled using eutectic composition 63Sn/37Pb, 62Sn/36Pb/2Ag, and 63Sn/34.4Pb/2Ag/0.5Sb solder after pre-conditioning at MRT Lv 3 (Moisture Resistance Test Level) and then conducted under T/C (Temperature Cycle test). For each case, the ball shear strength was obtained and micro structure photos were taken. SEM (scanning electron microscope) and EDX (Energy Dispersive X-ray) were used to the analyze failure mechanism. The growth rate of Au-Sn intermetallic compound in Sn63Pb34.5Ag2Sb0.5 solder was slow when compared to 63Sn/37Pb solder and 62Sn/36Pb/2Ag solder. The degradation of shear strength of solder balls caused by solder composition was discussed.

In-situ Analysis of Temperatures Effect on Electromigration-induced Diffusion Element in Eutectic SnPb Solder Line (공정조성 SnPb 솔더 라인의 온도에 따른 Electromigration 확산원소의 In-situ 분석)

  • Kim Oh-Han;Yoon Min-Seung;Joo Young-Chang;Park Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.7-15
    • /
    • 2006
  • In-situ observation of electromigration in thin film pattern of 63Sn-37Pb solder was performed using a scanning electron microscope system. The 63Sn-37Pb solder had the incubation stage of electromigration for edge movement when the current density of $6.0{\times}10^{4}A/cm^2$ was applied the temperature between $90^{\circ}C\;and\;110^{\circ}C$. The major diffusion elements due to electromigration were Pb and Sn at temperatures of $90-110^{\circ}C\;and\;25-50^{\circ}C$, respectively, while no major diffusion of any element due to electromigration was detected when the test temperature was $70^{\circ}C$. The reason was that both the elements of Sn and Pb were migrated simultaneously under such a stress condition. The existence of the incubation stage was observed due to Pb migration before Sn migration at $90-110^{\circ}C$. Electromigration behavior of 63Sn-37Pb solder had an incubation time in common for edge drift and void nucleation, which seemed to be related the lifetime of flip chip solder bump. Diffusivity with $Z^*$(effective charges number) of Pb and Sn were strongly affect the electromigration-induced major diffusion element in SnPb solder by temperature, respectively.

  • PDF

Shear Strength of the ${Cu_6}{Sn_5}$-dispersed Sn-Pb Solder Bumps Fabricated by Screen Printing Process (${Cu_6}{Sn_5}$를 분산시켜 스크린 프린팅법으로 제조한 Sn-Pb 솔더범프의 전단강도)

  • Choe, Jin-Won;Lee, Gwang-Eung;Cha, Ho-Seop;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.799-806
    • /
    • 2000
  • Cu$_{6}$Sn$_{5}$-dispersed 63Sn-37Pb solder bumps of 760$\mu\textrm{m}$ size were fabricated on Au(0.5$\mu\textrm{m}$)/Ni(5$\mu\textrm{m}$)/Cu(27$\pm$20$\mu\textrm{m}$) BGA substrates by screen printing process, and their shear strength were characterized with variations of dwell time at reflow peak temperature and aging time at 15$0^{\circ}C$ . With dwell time of 30 seconds at reflow peak temperature, the solder bumps with Cu$_{6}$Sn$_{5}$ dispersion exhibited higher shear strength than the value of the 63Sn-37Pb solder bump. With increasing the dwell time longer than 60 seconds, however the shear strength of the Cu$_{6}$Sn$_{5}$-dispersed solder bumps became lower than that the 63Sn-37Pb solder bumps. The failure surface of the solder bumps could be divided into two legions of slow crack propagation and critical crack propagation. The shear strength of the solder bumps was inversely proportional to the slow crack propagation length, regardless of the dwell time at peak temperature, aging time at 150 $^{\circ}C$ and the volume fraction of Cu$_{6}$Sn$_{5}$ dispersion.> 5/ dispersion.

  • PDF

Microstructure and Mechanical Properties of the Sn-Pb Solder Alloy with Dispersion of ${Cu_6}{Sn_5}$ and Cu (${Cu_6}{Sn_5}$ 및 Cu 분산에 따른 Sn-Pb 솔더합금의 미세구조와 기계적 성질)

  • Lee, Gwang-Eung;Choe, Jin-Won;Lee, Yong-Ho;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.770-777
    • /
    • 2000
  • Microstructure and mechanical properties of the $Cu_6Sn_5$-dispersed 63Sn-37Pb solder alloy, for which $Cu_6Sn_5$ powders less than $1{\mu\textrm{m}}$ size were fabricated by mechanical alloying, were characterizde and compared with those of the Cu-dispersed solder alloy. Compared to the $Cu_6Sn_5$-dispersed solder alloy, large amount of $Cu_6Sn_5$ and fast growth of $Cu_6Sn_5$ were observed in the Cu-dispersed alloy. The $Cu_6Sn_5$-dispersed solder alloy exhibited lower yield strength, but higher ultimate tensile strength than those of the Cu-dispersed alloy. With dispersion of 1~9 vol% $Cu_6Sn_5$ and Cu, the yield strength increased from 23 MPa and to 40 MPa, respectively. The ultimate tensile strength increased from 34.7 MPa to 45.3 MPa and to 43.1 MPa with dispersion of 5 vol% $Cu_6Sn_5$ and Cu, respectively.

  • PDF

A Study on the Creep Characteristics of Solder of 63 Sn-37Pb (63Sn-37Pb 땜납의 크리프 특성에 관한 연구)

  • 이억섭;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.138-144
    • /
    • 2004
  • The initiation and the propagation of solder joint crack depend on its environmental conditions, such as high temperature creep and thermal fatigue. Creep is known to be the most important factor for the mechanical failure of solder joints in micro-electronic components and micro-systems. This is mainly caused by the different thermal expansion coefficients of the materials used in the micro-electronic packages. To determine the reliability of solder joints and consequently the electronic components, the characterization of the creep behavior of this group of materials is crucial. This paper is to apply the theory of creep into solder joints and to provide related technical information needed for evaluation of reliability of solder joint to failure. 63Sn-37Pb solder was used in this study. This paper experimentally shows a way to enhance the reliability of solder joints.

Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint (Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가)

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF

가속 시험을 통한 솔더조인트의 건전성 평가

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.221-226
    • /
    • 2004
  • The thermal stresses induced by difference in Coefficient of Thermal Expansion between FR-4 board and 63Sn-37Pb solder joint directly affect the reliability of 63Sn-37Pb solder joint. This research, thus, focuses to investigate the crack initiation and propagation behavior around solder joint by imposing a designed Acceleration Life Test Procedure on solder joint by using a newly manufactured Thermal Impact Experimental Apparatus. The fracture mechanism of the solder joint was found to be highly influenced by thermal stresses. The reliability of solder joint was evaluated by using a failure probability model in terms of varying parameters such as frequency and temperature. The relationship between failure probability and safety factor was also studied.

  • PDF

Study on Initial Strength of Solder Joints (Solder 접합부의 초기 강도에 관한 연구)

  • 신영의;정태경;안승호
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.110-112
    • /
    • 1995
  • Initial solder joint strengths of various solder pastes, such as Sn-Pb(63-37wt%), Sn-In(52-48wt%), Sn-In-Ag(77.5-20-2.5wt%), and Sn-Ag(96.5-3.5wt%) has been studied. A system that can control the solder joint interface temperature during bonding process was also desined and implemented to improve solder joint integrity.

  • PDF