• 제목/요약/키워드: 6-DOF Parallel Manipulator

검색결과 33건 처리시간 0.032초

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

역나선 이론을 이용한 저자유도 평행구조 기구의 강성해석 (Stiffness Analysis of a Low-DOF Parallel Manipulator using the Theory of Reciprocal Screws)

  • 김한성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.573-578
    • /
    • 2004
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure force is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The $6{\times}6$ Cartesian stiffness matrix is obtained, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, a 3-UPU parallel manipulator is used as an example to demonstrate the methodology.

  • PDF

6 자유도 병렬 공작기계를 위한 동역학 모델링 (Dynamic Modeling for 6-DOF Parallel Machine Tool)

  • 조한상;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1013-1016
    • /
    • 1995
  • This paper deals with dynamics and control of a PRP6-DOF parallel manipulator. Dynamic modeling includes the effect of inertia of all links in the mechanism to increase modeling accuracy. Kinematic analysis about forward and inverse kinematics is also explained. Using Lagrange-D' Alambert method we get equations of motions in a link space which fully represent 6DOF motions of the manipulator.

  • PDF

6자유도 병렬형 매니퓰레이터의 작업공간결정을 위한 기하학적 접근 (Geometrical approach for the workspace of a 6-DOF parallel manipulator)

  • 김도익;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.217-220
    • /
    • 1996
  • In this paper, a fully geometrical method for the determination of the workspace of a 6-DOF parallel manipulator is presented using the concept of 4-bar linkage. The reachable and dexterous can be determined from the proposed algorithm. In order to evaluate the workspace, each leg is considered as an open chain, and two kinematic constraints are developed. The proposed method is verified by simulation.

  • PDF

역나선 이론을 이용한 저자유도 병렬형 기구의 강성해석 (Stiffness Analysis of a Low-DOE Parallel Manipulator using the Theory of Reciprocal Screws)

  • 김한성
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.680-688
    • /
    • 2005
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure farce is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an it_DOF parallel nipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The 6x f Cartesian stiffness matrix is derived, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, the 3-UPU, 3-PRRR, and Tricept parallel manipulators are used as examples to demonstrate the methodology.

Dynamic Force Analysis of the 6-DOF Parallel Manipulator

  • Tanaka, Yoshito;Yun, So-Nam;Hitaka, Yasunobu;Wakiyama, Masahiro;Jeong, Eun-A;Kim, Ji-U;Park, Jung-Ho;Ham, Young-Bog
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.5-11
    • /
    • 2015
  • The 6DOF (degrees of freedom) Parallel Manipulators have some advantages that are high power, high rigidity, high precision for positioning and compact mechanism compared with conventional serial link manipulators. For these Parallel Manipulators, it can be expected to work in the new fields such that the medical operation, high-precision processing technology and so on. For this expectation, it is necessary to control the action reaction pair of forces which act between the Parallel Manipulator and the operated object. In this paper, we analyze the dynamics of the 6DOF Parallel Manipulator and present numerical simulation results.

기구학적 등방성을 고려한 특정작업경로를 가진 6-DOF 병렬형 매니퓰레이터 (The 6-DOF Parallel Manipulator Having the Specific Trajectory Based on the Kinematic Isotropy)

  • 양현익;허원혁
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.495-502
    • /
    • 2004
  • In this paper, kinematic structure of parallel manipulator having 6-DOF is determined to follow the specific trajectory represented by several curves expressed by the parametric variable functions. In addition, the parallel manipulator is designed to have a high dexterity by considering a kinematic isotropy which can stabilize the motion of the moving platform in the restricted workspace.

유전 알고리즘을 이용한 6자유도 병렬형 매니퓰레이터의 순기구학 해석 (Forward kinematic analysis of a 6-DOF parallel manipulator using genetic algorithm)

  • 박민규;이민철;고석조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1624-1627
    • /
    • 1997
  • The 6-DOF parallel manipulator is a closed-kindmatic chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. Because of its advantage, the parallel manipulator have been widely used in many engineering applications such as vehicle/flight driving simulators, rogot maniplators, attachment tool of machining centers, etc. However, the kinematic analysis for the implementation of a real-time controller has some problem because of the lack of an efficient lagorithm for solving its highly nonliner forward kinematic equation, which provides the translational and orientational attitudes of the moveable upper platform from the lenght of manipulator linkages. Generally, Newton-Raphson method has been widely sued to solve the forward kinematic problem but the effectiveness of this methodology depend on how to set initial values. This paper proposes a hybrid method using genetic algorithm(GA) and Newton-Raphson method to solve forward kinematics. That is, the initial values of forward kinematics solution are determined by adopting genetic algorithm which can search grobally optimal solutions. Since determining this values, the determined values are used in Newton-Raphson method for real time calcuation.

  • PDF

정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용 (Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator)

  • 김희국;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

국부구조화 방법을 이용한 6자유도 병렬형 매니퓰레이터의 특이점 해석 (Singularity analysis of 6-DOF parallel manipulator with local structurization method)

  • Kim, Doik;Chung, Wankyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1297-1301
    • /
    • 1997
  • Generally, singularity analysis of 6-DOF parallerl manipulators is very difficult and, as result, velocity relation has many uncertainties. In this paper, an alternative method using the local structurizatioin method(LSM) for the analysis of singular configuraions is presented. With LSM, the velocity relation can be represented in a simple form, and the result is totally equivalent to the conventional velocity relation. The velocity relation suggested in this paper gives a closed-form solution of singularities.

  • PDF