• Title/Summary/Keyword: 6 MV 광자선

Search Result 143, Processing Time 0.024 seconds

Compare the Clinical Tissue Dose Distributions to the Derived from the Energy Spectrum of 15 MV X Rays Linear Accelerator by Using the Transmitted Dose of Lead Filter (연(鉛)필터의 투과선량을 이용한 15 MV X선의 에너지스펙트럼 결정과 조직선량 비교)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.80-88
    • /
    • 2008
  • Recent radiotherapy dose planning system (RTPS) generally adapted the kernel beam using the convolution method for computation of tissue dose. To get a depth and profile dose in a given depth concerened a given photon beam, the energy spectrum was reconstructed from the attenuation dose of transmission of filter through iterative numerical analysis. The experiments were performed with 15 MV X rays (Oncor, Siemens) and ionization chamber (0.125 cc, PTW) for measurements of filter transmitted dose. The energy spectrum of 15MV X-rays was determined from attenuated dose of lead filter transmission from 0.51 cm to 8.04 cm with energy interval 0.25 MeV. In the results, the peak flux revealed at 3.75 MeV and mean energy of 15 MV X rays was 4.639 MeV in this experiments. The results of transmitted dose of lead filter showed within 0.6% in average but maximum 2.5% discrepancy in a 5 cm thickness of lead filter. Since the tissue dose is highly depend on the its energy, the lateral dose are delivered from the lateral spread of energy fluence through flattening filter shape as tangent 0.075 and 0.125 which showed 4.211 MeV and 3.906 MeV. In this experiments, analyzed the energy spectrum has applied to obtain the percent depth dose of RTPS (XiO, Version 4.3.1, CMS). The generated percent depth dose from $6{\times}6cm^2$ of field to $30{\times}30cm^2$ showed very close to that of experimental measurement within 1 % discrepancy in average. The computed dose profile were within 1% discrepancy to measurement in field size $10{\times}10cm$, however, the large field sizes were obtained within 2% uncertainty. The resulting algorithm produced x-ray spectrum that match both quality and quantity with small discrepancy in this experiments.

  • PDF

Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator (고에너지 방사선치료 시 치료변수에 따른 광중성자 선량 변화 연구)

  • Kim, Yeon Su;Yoon, In Ha;Bae, Sun Myeong;Kang, Tae Young;Baek, Geum Mun;Kim, Sung Hwan;Nam, Uk Won;Lee, Jae Jin;Park, Yeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • Purpose : Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam ($E{\geq}8MeV$). Materials and Methods : TrueBeam $ST{\time}TM$(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : $5{\time}5cm$). Results : The mean values of the detected photoneutron dose from IMRT and VMAT were $449.7{\mu}Sv$, $2940.7{\mu}Sv$. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as $2940.7{\mu}Sv$, $232.0{\mu}Sv$. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were $3242.5{\mu}Sv$, $3189.4{\mu}Sv$, $3191.2{\mu}Sv$ with case 1, $3493.2{\mu}Sv$, $3482.6{\mu}Sv$, $3477.2{\mu}Sv$ with case 2 and $4592.2{\mu}Sv$, $4580.0{\mu}Sv$, $4542.3{\mu}Sv$ with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$, $225^{\circ}$, $270^{\circ}$, $315^{\circ}$) were measured as $3.2{\mu}Sv$, $4.3{\mu}Sv$, $5.3{\mu}Sv$, $11.3{\mu}Sv$, $14.7{\mu}Sv$, $11.2{\mu}Sv$, $3.7{\mu}Sv$, $3.0{\mu}Sv$ at 10MV and as $373.7{\mu}Sv$, $369.6{\mu}Sv$, $384.4{\mu}Sv$, $423.6{\mu}Sv$, $447.1{\mu}Sv$, $448.0{\mu}Sv$, $384.5{\mu}Sv$, $377.3{\mu}Sv$ at 15MV. Conclusion : As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam $ST{\time}TM$. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정 조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • 김회남;박성용;서태석;권수일;윤세철
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.87-102
    • /
    • 1997
  • The absolute absorbed dose can be determined according to the measurement conditions; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of 10cm $\times$ 10cm field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations of phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG21 and IAEA protocol. The differences between two protocols are within 1% while the average value of IAEA protocol was 0.5% smaller than TG21 protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within 1%, but individual discrepancies are in the range of - 2.5% to 1.2% depending upon the choice of measurement combination. The largest discrepancy of - 2.5% was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coeficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, it shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Evaluation of Dose Distribution Using Gafchromic $EBT^{(R)}$ Film (Gafchromic $EBT^{(R)}$ 필름을 이용한 선량분포의 평가)

  • Kang, Se-Sik;Ko, Seong-Jin;Jang, Eun-Sung
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • Dose evaluation for small field such as stereotactic radiosurgery was performed using $Gafchromic^{(R)}$ EBT film. Every film which irradiated 6MV photon beam was scanned and obtained the optical density(OD) by flat bed scanner after 24 hours of irradiation. This study compared dose from diode in water and Gafchromic $EBT^{(R)}$ film in acrylic phantom to verify the reliability of the film, and to evaluate the SRS in clinical dose distributions from calculation and measurement in the region of virtual target in humanoid and cylindrical phantoms were compared. The Gafchromic $EBT^{(R)}$ film was found to be linear up to 9Gy. The $D_{max}$ for 6 MV was measured at 1.5 cm from the surface by both of diode and the film. As the depth is deeper, the error was measured within $2{\sim}3%$ at $10{\sim}20\;cm$ depth. Comparing between distribution from calculation and measurement, we found that there is 5% error at 90% isodose line. We found that given dose could be measured accurately by using the phantoms. It was feasible to use the Gafchromic $EBT^{(R)}$ film in quality assurance of SRS.

  • PDF

Characteristics of dose distribution for virtual wedge (가변형 쐐기필터의 선량분포에 관한 특성)

  • 김부길;김진기
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • We was investigate the dosimetric characteristics of the virtual wedge and it compared to the conventional fixed wedge. Also we was evaluate the quality factor of the experimental multi-channel dosimetry system for virtual wedge. Recently virtual wedge technique and wedge fraction methods are available through the computer controlled asymmetric collimator or the independent jaw in medical linear accelerator for radiation therapy. The dosimetric characteristics are interpreted by radiation field analyzer RFA-7 system and PTW-UNIDOS system. Experimental multi-channel dosimetry system for virtual wedge was consists of the electrometer, the solid detector and array phantom. The solid detectors were constructed using commercially diodes for the assessment of quality assurance in radiotherapy. And it was used for the point dose measuring and field size scanning. The semiconductor detector and ion chamber were positioned at a dmax, 5 cm, 10 cm, 20 cm depth and its specific ratio was determined using a scanning data. Wedge angles in fixed and virtual type are compared with measurements in water phantom and it is shown that the wedge angle 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$were agree within 1$^{\circ}$ degree in 6, 10 MV photon beams. In PDD and beam flatness, experimental multi-channel disimetry system was capable of reproduceing the measured values usually to within $\pm$2.1% the statistical uncertainties of the data. It was used to describe dosimetric characteristics of virtual wedge in clinical photon beams. Also we was evaluate optimal use of the virtual wedge and improve the quality factor of the experimental multi-channel dosimetry system for virtual wedge.

  • PDF

Geant4 Code Based Simulation of 6 MV Photon Beam for Analysis of Dose Distribution (Geant4 코드를 이용한 선형가속기 6 MV 광자선의 선량분포에 관한 연구)

  • Lee, Jun-Seong;Kim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.449-455
    • /
    • 2022
  • This study is to present a Geant4 code for the simulation of the absorbed dose distribution given by a medical linac for 6 MV photon beam. The dose distribution was verified by comparison with calculated beam data and beam data measured in water phantom. They were performed for percentage depth dose(PDD) and beam profile of cross-plane for two field sizes of 10 × 10 and 15 × 15 cm2. Deviations of a percentage and distance were obtained. In energy spectrum, the mean energy was 1.69 MeV. Results were in agreement with PDD and beam profile of the phantom with a tolerance limit. The differences in the central beam axis data 𝜹1 for PDD had been less than 2% and in the build up region, these differences increased up to 4.40% for 10 cm square field. The maximum differences of 𝜹2 for beam profile were calculated with a result of 4.35% and 5.32% for 10 cm, 15 cm square fields, respectively. It can be observed that the difference was below 4% in 𝜹3 and 𝜹4. For two field sizes of 𝜹50-90 and RW50, the results agreed to within 2 mm. The results of the t-test showed that no statistically significant differences were found between the data for PDD of 𝜹1, p>0.05. A significant difference on PDD was observed for field sizes of 10 × 10 cm2, p=0.041. No significant differences were found in the beam profile of 𝜹3, 𝜹4, RW50, and 𝜹50-90. Significant differences on beam profile of 𝜹2 were observed for field sizes of 10 × 10 cm2, p=0.025 and for 15 × 15 cm2, p=0.037. This work described the development and reproducibility of Geant4 code for verification of dose distribution.

Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators (선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석)

  • Oh, Se An;Yea, Ji Woon;Kim, Sang Won;Lee, Rena;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The purpose of this study is to evaluate the results for the quality assurance through a statistical analysis on the output characteristics of linear accelerators belonging to Yeungnam University Medical Center by using the Shewhart-type chart, Exponentially weighted moving average chart (EWMA) chart, and process capability indices $C_p$ and $C_{pk}$. To achieve this, we used the output values measured using respective treatment devices (21EX, 21EX-S, and Novalis Tx) by medical physicists every month from September, 2012 to April, 2014. The output characteristics of treatment devices followed the IAEA TRS-398 guidelines, and the measurements included photon beams of 6 MV, 10 MV, and 15 MV and electron beams of 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16MeV, and 20 MeV. The statistical analysis was done for the output characteristics measured, and was corrected every month. The width of control limit of weighting factors and measurement values were calculated as ${\lambda}=0.10$ and L=2.703, respectively; and the process capability indices $C_p$ and $C_{pk}$ were greater than or equal to 1 for all energies of the linear accelerators (21EX, 21EX-S, and Novalis Tx). Measured values of output doses with drastic and minor changes were found through the Shewhart-type chart and EWMA chart, respectively. The process capability indices $C_p$ and $C_{pk}$ of the treatment devices in our institution were, respectively, 2.384 and 2.136 for 21EX, 1.917 and 1.682 for 21EX-S, and 2.895 and 2.473 for Novalis Tx, proving that Novalis Tx has the most stable and accurate output characteristics.

The Usefulness Assessment of Verifying Daily Output by Using CHECKMATE$^{TM}$ (CHECKMATE$^{TM}$를 이용한 일일 출력 검증의 유용성 평가)

  • Cho, Han-Sang;Nam, Sang-Soo;Park, Hae-Jin;Kim, Mi-Hwa;Park, An-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Purpose: In this study, we tried to check the usefulness of two Linear Accelerators, Clinac IX and 21EX (Varian, Palo Alto, CA), which are equipped in Ajou Medical Center. From 2008 to 2010, we evaluated the error range of Absolute Dose based on the daily output, which was measured by CHECKMATE$^{TM}$ (Sun Nuclear, Melbourne, FL). Materials and Methods: For Daily Q.A, photon beams of two linear accelerators, 21EX and IX (6 MV and 10 MV, respectively) were measured daily by using CHECKMATE$^{TM}$ just before the treatment began, while the absolute dose was measured biweekly by using water phantom. We analyzed the data of measured values from the daily Q.A and the absolute dose from 2008 to 2010 for 21EX, and from 2009 to 2010 for IX. We utilized Excel 2007 (Microsoft, USA) to evaluate Average, Standard deviation and Confidence level of the data. Furthermore, in order to check the measured values of CHECKMATE$^{TM}$ and the significance of absolute dose, each error value was compared and analyzed. Results: During the observation period, the output of two equipment's absolute dose increased in process of time and in both 6 MV and 10 MV, there was a similar increasing trend. In addition, the error rate of the measured value of CHECKMATE$^{TM}$ and the value of absolute dose were under 0.34, which means that there is a similarity relationship between the two measured values. After checking that the measured value of CHECKMATE$^{TM}$ increased, We measured the absolute dose to adjust that. When the error range was close to 2~3%, the number of changing the output was four for 21EX and three for IX. Conclusion: As a result of measuring and analyzing the daily output changes for two years by using CHECKMATE$^{TM}$, we could find that there is a significance between the output which we should obey during Q.A, and the measured value of absolute dose within the error tolerance of 2~3%. Thus, the use of CHECKMATE$^{TM}$ can be positively considered for more efficient and reliable daily output verification of linear accelerator. It can also be a good standard for other medical centers to understand the trends of linear accelerator and to refer to for the correction of each output.

  • PDF

Effects of Dry Matter Content of Liquid Swine Manure on Dry Matter Yield and Nutritive Value of Italian Ryegrass, Rye and Oat, and the Chemical Characteristics of Soil in Jeju (제주지역에서 건물 함량이 다른 돈분 액비 시용이 이탈리안 라이그라스, 호밀 및 귀리의 수량, 사료가치 및 토양 특성에 미치는 영향)

  • Song, Sang-Taek;Kim, Moon-Chul;Hwang, Kyoung-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.3
    • /
    • pp.159-170
    • /
    • 2006
  • This study was conducted to investigate the effects of two dry matter levels of liquid swine manure on dry matter yield and nutritive value of Italian ryegrass, rye and oats, and the chemical characteristics of soil in Jeju. This experiment tested in split plot design. Three forage crops (Italian ryegrass, rye and oats) were the main plot and four fertilizers (no fertilizer=T0, chemical fertilizer=T1, liquid swine manure with DM 2.7%=T2 and liquid swine manure with DM 5.9 %=T3) were the sub plots. Yield and nutrient contents of forage crops and soil properties were determined. Application of liquid swine manure containing 5.9% dry matter resulted in highest DM yield in all three forage crops species compared with the other treatments (p<0.01). Crude protein content(%) and crude protein yield(kg/ha) of forage crops were highest in rye compared with the other forage crops species(p<0.01). K and Mg contents of soil were higher(p<0.01) in rye than in the other species while Na contents was higher(p<0.01) in Italian ryegrass than others. Mg content of soil appeared higher in rye than in the others and higher(p<0.05) in forage crops applied with liquid manure containing 2.7% DM compared with the other species. $NO_3-N$ contents in soil was lower in rye than the other species and higher in species with chemical fertilizer. These findings indicate that most of liquid swine manure produced on local pig farms containing low levels of dry matter and other nutrients suggest a low efficiency of its use as a fertilizer. The liquid swine manure is recommended as a fertilizer for rye production in winter, compared with Italian ryegrass or oat.

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy (고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구)

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

  • PDF