• Title/Summary/Keyword: 6 Degrees of Freedom System

Search Result 115, Processing Time 0.029 seconds

A study on improving valve train performance by a dynamic model analysis (동적모델 해석에 의한 밸브기구 성능개선에 관한 연구)

  • 전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.837-844
    • /
    • 1986
  • Valve motion is one of the most important factors which affect on engine noise and efficiency. Since engine valve train is characterized as a spring-mass system, its dynamic response should be analyzed for varing operation RPM range. In this paper, a OHV type valve train motion was studied by dynamic model analysis. A five degrees of freedom model was set up and simulated for different operating conditions. Also in order to varify the usefulness of the model, the valve displacement and the pushrod force were directly measured for varying RPMs and compared with the simulation results. Then sensitivity analysis was done with the five degrees of freedom model in order to suggest for valve train design change.

4 degrees of freedom control for attractive levitation module (자기부상 모듈의 4자유도 제어)

  • Kim, Kook-Hun;Kim, Choon-Kyung;Cho, Chang-Hee;Kim, Jong-Hoon;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.271-273
    • /
    • 1993
  • One maglev vehicle is composed of 6 or 8 modules. Each module is composed of 4 staggered magnets attached to an aluminum bogie. In the view point of levitation control except propulsion-by LIM. 5 is the maximum degree of freedom to be controlled. But rolling control of the vhhicle depends on the bogie structure. We describe just anti-roll type bogie structure and 4 degree of freedom control is sufficient for levitation quality improvement. Multivariable pole-placement concept is used for controller design. Control experiment is performed on a specially designed test module as well as actual bogie system.

  • PDF

A Study on Dynamic Modeling of the Vibration Isolation System for the Ultra Precision Measurement (초정밀작업을 위한 제진시스템의 동역학 모델링 연구)

  • Son, Sung-Wan;Jang, Sung-Ho;Baek, Jae-Ho;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The anti-vibration tables that use air suspensions as dampers have been widely used due to their high anti-vibration performance in wide frequency band. However, they face a problem of easily accelerating the vibration when triggered by external force because their air suspensions have low rigidity and dampness. In response, there has been a study on active/semi-active dampers that use only the passive components like air suspensions to complement the passive-control format. Thus, we have dynamically analyzed the active/semi-active control of such passive anti-vibration tables. To demonstrate the anti-vibration table's control system, we have also constructed a kinetic model based on the physical characteristics of an anti-vibration table with 6 degrees of freedom and verified its applicability through analysis and experiments.

Implementing 3DoF+ 360 Video Compression System for Immersive Media (실감형 미디어를 위한 3DoF+ 360 비디오 압축 시스템 구현)

  • Jeong, Jong-Beom;Lee, Soonbin;Jang, Dongmin;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.743-754
    • /
    • 2019
  • System for three degrees of freedom plus (3DoF+) and 6DoF requires multi-view high resolution 360 video transmission to provide user viewport adaptive 360 video streaming. In this paper, we implement 3DoF+ 360 video compression system which removes the redundancy between multi-view videos and merges the residual into one video to provide high quality 360 video corresponding to an user's head movement efficiently. Implementations about 3D warping based redundancy removal method between 3DoF+ 360 videos and residual extraction and merger are explained in this paper. With the proposed system, 20.14% of BD-rate reduction in maximum is shown compared to traditional high-efficiency video coding (HEVC) based system.

A Study on the Optimal Solution for the Manipulation of a Robot with Four Limbs (4지 로봇의 최적 머니퓰레이션에 관한 연구)

  • Lee, Ji Young;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1231-1239
    • /
    • 2015
  • We developed a robot that has four limbs, each of which has the same kinematic structure and has 6 degrees of freedom. The robot is 600mm high and weighs 4.3kg. The robot can perform walking and manipulating task by using the four limbs selectively. The robot has three walking patterns. The first one is biped walking, which uses two rear limbs as legs and two front limbs as arms. The second one is biped walking with supporting arms, which is basically biped walking but uses two arms as supporting legs for increasing stability of the robot. The last one is quadruped walking, which uses all the four limbs as legs. When a task for the robot is given, the robot approaches the task point by selecting an appropriate walking pattern among three walking patterns and performs the task. The robot has many degrees of freedom and is a redundant system for a three dimensional task. We propose a redundancy resolution method, in which the robot’s translational move to the task point is modeled as a prismatic joint and optimal solutions are obtained by optimizing some performance criteria. Several simulations are performed for the validity of the proposed method.

An analysis of the farm silo supported by ground (地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 -)

  • Cho, Jin-Goo;Cho, Hyun-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF

Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.713-735
    • /
    • 2005
  • Due to the complexity of mathematical expressions, the literature concerning the free vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In this paper, the three degrees of freedom (dof's) for a spring-mass system refer to the translational motion of its lumped mass in the vertical ($\bar{z}$) direction and the two pitching motions of its lumped mass about the two horizontal ($\bar{x}$ and $\bar{y}$) axes. The basic concept of this paper is to replace each three-dof spring-mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate carrying any number of three-dof spring-mass systems can be obtained from those of the same plate supported by the same number of sets of equivalent springs. Since the three dof's of the lumped mass for each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the entire vibrating system is not affected by the total number of the spring-mass systems attached to the rectangular plate. However, this is not true in the conventional finite element method (FEM), where the total dof of the entire vibrating system increases three if one more three-dof spring-mass system is attached to the rectangular plate. Hence, the computer storage memory required by using the presented equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a three-dof spring-mass system with the specified spring constants and mass magnitude, the presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant from this viewpoint.

Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams

  • Beheshti-Aval, S.B.;Lezgy-Nazargah, M.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.921-938
    • /
    • 2010
  • Most of studies on control of beams containing piezoelectric sensors and actuators have been based on linear quadratic regulator (LQR) with state feedback or output feedback law. The aim of this study is to develop velocity-acceleration feedback law in the optimal control of smart piezoelectric beams. A new controller which is an optimal control system with velocity-acceleration feedback is presented. In finite element modeling of the beam, the variation of mechanical displacement through the thickness is modeled by a sinus model that ensures inter-laminar continuity of shear stress at the layer interfaces as well as the boundary conditions on the upper and lower surfaces of the beam. In addition to mechanical degrees of freedom, one electric potential degree of freedom is considered for each piezoelectric element layer. The efficiency of this control strategy is evaluated by applying to an aluminum cantilever beam under different loading conditions. Numerical simulations show that this new control scheme is almost as efficient as an optimal control system with state feedback. However, inclusion of the acceleration in the control algorithm increases practical value of a system due to easier and more accurate measurement of accelerations.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems

  • Bolourchi, Ali;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.897-911
    • /
    • 2015
  • This study presents a novel approach based on advancements in Evolutionary Computation for data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected to external excitations at three points. The proposed technique of this research adapts Genetic Programming for discovering the optimum structure of the differential equation of an auxiliary variable associated with every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other degrees-of-freedom. After the termination of the first phase of the optimization process, a system of differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield accurate response estimates globally, because the separately obtained differential equations are coupled essentially, and their true performance can be assessed only when the entire system of coupled differential equations is solved. The resultant model after the second phase of optimization is a low-order low-complexity surrogate computational model that represents the investigated three-dimensional memory-dependent system. Hence, this research presents a promising data-driven modeling technique for obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably accurate results, and can be generalized to many problems, in various fields, ranging from engineering to economics as well as biology.