• Title/Summary/Keyword: 6 DOF simulation

Search Result 200, Processing Time 0.025 seconds

A Study on the Orientation of a High-Precision Stewart Platform (고정밀 병렬평행기구의 자세제어에 관한 연구)

  • Cha, Young-Youp;Jeong, Se-Mi
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1944-1946
    • /
    • 2008
  • This paper analyzed orientation simulation of Stewart platform which is a parallel manipulator of 6-DOF. When platform shape had been given, inverse kinematics as the problem about length of actuator could get an answer using a vector function simply, and forward kinematics as the problem solving shape of platform through the length of actuator could get answer using repetitive and manual explaining Newton-Raphson method because it is expressed a high nonlinear polynomial expression. In addition, for control the Stewart platform it could drive simply and it could confirm the state of orientation in real-time.

  • PDF

Performance Evaluation of Control Algorithms for 1/2 Tracked Vehicle with Semi-Active Suspension System (1/2 궤도차량에 대한 반능동 현수장치 제어 알고리즘들의 성능평가)

  • 윤일중;임재필;신휘범;이진규;신민재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.139-147
    • /
    • 2001
  • 2 DOF half-car model with 6 semi-active suspension units is utilized to evaluate the tracked vehicle dynamic performance simulated by several suspension control algorithms. The target of this research is to improve the ride comfort to maintain operator's handling capability when the tracked vehicle travels fast on the rough road. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-active, and on-off systems, are evaluated and analyzed in view point of ride comfort. The dynamic performances of vehicle are expressed and evaluated by vibratory characteristic evaluation curves, performance indices and frequency characteristic curves. The simulation results show that the performances of sky-hook algorithms for ride comfort nearly follow those of full state feedback algorithms and on-off algorithm is recommendatory when the vehicle runs relatively fast.

  • PDF

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.

Derivation and Verification of the Relative Dynamics Equations for Aerial Refueling (공중재급유를 위한 상대운동방정식 유도 및 검증)

  • Jang, Jieun;Lee, Sangjong;Ryu, Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • This paper addresses the derivation of 6-DOF equation of Tanker and Receiver's aircraft for aerial refueling. The new set of nonlinear equations are derived in terms of the relative translational and rotational motion of receiver aircraft respect to the tanker aircraft body frame. Further the wind effect terms due to the tanker's turbulence are included. The derivation of absolute dynamic equation for tanker aircraft written in the inertial frame is calculated from the relative dynamics equations of receiver. The derived relative and absolute equations are implemented the simulation in the same flight conditions to verify the relative motion and compare the trim results by using the MATLAB/SIMULINK program.

Hybrid position/force control of uncertain robotic systems using neural networks (신경회로망을 이용한 불확실한 로봇 시스템의 하이브리드 위치/힘 제어)

  • Kim, Seong-U;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.252-258
    • /
    • 1997
  • This paper presents neural networks for hybrid position/force control which is a type of position and force control for robot manipulators. The performance of conventional hybrid position/force control is excellent in the case of the exactly-known dynamic model of the robot, but degrades seriously as the uncertainty of the model increases. Hence, the neural network control scheme is presented here to overcome such shortcoming. The introduced neural term is designed to learn the uncertainty of the robot, and to control the robot through uncertainty compensation. Further more, the learning rule of the neural network is derived and is shown to be effective in the sense that it requires neither desired output of the network nor error back propagation through the plant. The proposed scheme is verified through the simulation of hybrid position/force control of a 6-dof robot manipulator.

  • PDF

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Jeong, Won-Tae;Kim, Young-Dong;Shin, Suck-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.67-71
    • /
    • 2002
  • In this paper, we propose a new deformable model based on non-linear elasticity, anisotropic behavior and the finite element method and developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology, which can calculate the real position and transmit the force data to device rapidly, The haptic system is composed of 6DOF force display device, high-speed controller and HIR library for 3D graphic deformation algorithm & haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. we demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we designed simulation program of force-reflecting, As the result of the experiment, we found that the controller has much higher resolution than some other controllers.

  • PDF

A Study on the Position Control in a Moving Vehicle with Disturbance (외란을 가지는 주행차량의 위치제어에 관한 연구)

  • Shin, Kyoo-Jae;Lee, Dong-Hee;Kwon, Young-Ahn
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.956-958
    • /
    • 1996
  • The moving vehicle with disturbances has the 6 dof motion in the pitching, yawing and rolling directions of two independent axes. The control system in such a moving vehicle has to perform disturbance rejection well. The paper presents PID controller with disturbance rejection function, low sensitivity filter and notch filter for the bending frequency rejection. The performance of a designed system has been certified by the simulation and experiment results.

  • PDF

Goal-Posture-Determination of a Steerable Mobile Robot for Active Information Display

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.3-10
    • /
    • 2018
  • A projection-based active information display system was proposed. The proposed system is based on Intelligent Space and a steerable projector mounted mobile robot which is called Ubiquitous Display (UD). In order to transfer visual information for a human in the Intelligent Space, the UD projects a certain shape of an image with a fixed size. Due to redundancy of degree of freedom (DOF), there are lots of situations to project a same shape and size of the image on a surface. In this paper, we describe a method to determine a goal posture of the UD. Here, the goal posture is the most efficient position and orientation of the UD so as to project visual information and it is determined by the Intelligent Space. To verify the proposed method, simulation and demonstration are carried out.

Optimized Location Selection of Active Mounting System Applied to 1D Beam Structure

  • Kim, Byeongil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.505-511
    • /
    • 2022
  • The objective of this article is finding optimized locations of active mounts applied to 6-DOF beam structure with two active paths. When sinusoidal excitation forces are applied to the beam structure, secondary forces from two active mounts which can minimize (ideally becoming zero) transmitted forces are calculated mathematically and the vibration attenuation performance is validated through computer simulations. When the force applied to two active mounts are relatively low, those specific locations are considered as optimized location of active mounting system. As the location of mount changes, amplitude and phase of secondary forces in each path are analyzed with 3D plots. Based on the simulation results, a criterion for selecting mounting location is suggested and it would be very useful for selecting actuators for active mounts appropriately.

Experimental and Numerical Studies on a Test Equipment for the Replication of Flight Motions of Spin-Stabilized Ammunition (회전안정탄약의 비행운동 모사장치에 대한 실험적·수치해석적 연구)

  • Lee, Youngki;Park, Sungtaek;Song, Yihwa;Choi, Minsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.728-735
    • /
    • 2015
  • A gas gun system to replicate the flight motions of large caliber spin-stabilized ammunition has been investigated experimentally and numerically. The system is specially designed to study aerodynamic characteristics and dynamics of a flight body ejected from a cargo shell or a subsonic projectile itself at up to 2,000 rpm and 100 m/s. Raynolds-averaged Navier-Stokes equations with a overset mesh technique and 6-DOF dynamics were solved to decide the chamber pressure according to the muzzle velocity input by users. The predicted velocity values show less than 6 % of discrepancies compared to experimental data. The system has successfully been tested for the simulation of deployment of a parafoil for a 155 mm gun-launched projectile.