• Title/Summary/Keyword: 5 fluorouracil

Search Result 352, Processing Time 0.023 seconds

Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells

  • Yao, Cheng Wen;Kang, Kyoung Ah;Piao, Mei Jing;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Na, Soo-Young;Jeong, Seung Uk;Boo, Sun-Jin;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.315-320
    • /
    • 2017
  • We investigated the role of autophagy in SNUC5/5-FUR, 5-fluorouracil (5-FU) resistant SNUC5 colon cancer cells. SNUC5/5-FUR cells exhibited low level of autophagy, as determined by light microscopy, confocal microscopy, and flow cytometry following acridine orange staining, and the decreased level of GFP-LC3 puncta. In addition, expression of critical autophagic proteins such as Atg5, Beclin-1 and LC3-II and autophagic flux was diminished in SNUC5/5-FUR cells. Whereas production of reactive oxygen species (ROS) was significantly elevated in SNUC5/5-FUR cells, treatment with the ROS inhibitor N-acetyl cysteine further reduced the level of autophagy. Taken together, these results indicate that decreased autophagy is linked to 5-FU resistance in SNUC5 colon cancer cells.

Preparation of 5-fluorouracil-loaded Nanoparticles and Study of Interaction with Gastric Cancer Cells

  • Fan, Yu-Ling;Fan, Bing-Yu;Li, Qiang;Di, Hai-Xiao;Meng, Xiang-Yu;Ling, Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7611-7615
    • /
    • 2014
  • Aims: To prepare 5-fluorouracil (5-Fu) nanoparticles with higher encapsulation efficiency and drug loading, and then investigate interaction with the SGC-7901 gastric cancer cell line. Materials and Methods: Prescription was optimized by orthogonal experiments, the encapsulation efficiency and loading capacity were tested by high-performance liquid chromatography, and inhibition of proliferation by 5-Fu nanoparticles and 5-Fu given to cells for 24, 48 and 72 hours was investigated by methyl thiazolyl tetrazolium assay (MTT). In addition, 5-Fu nanoparticles were labeled by fluorescein isothiocyanate (FITC), and absorption into cells was tested by flow cytometry. Results: The optimal conditions for preparation were concentrations of 5-Fu of 5mg/ml, of $CaCl_2$ of 60 mg/ml and of chitosan of 2 mg/ml. With a stirring speed of 1200rpm, encapsulation efficiency of 5-Fu nanoparticles was $55.4{\pm}1.10%$ and loading capacity was $4.22{\pm}0.14%$; gastric cancer cells were significantly inhibited by 5-Fu nanoparticles in a time and concentration dependent manner, and compared to 5-Fu with slower drug release, in a certain concentration range, inhibition with 5-Fu nanoparticles was stronger. 5-Fu nanoparticles were absorbed by the cells in line with the concentration. Conclusions: 5-Fu nanoparticles can inhibit growth of gastric cancer cells in vitro to a greater extent than with 5-Fu with good adsorption characteristics, supporting feasibility as a carrier.

Antitumor Evaluation of Cannabidiol and Its Derivatives by Colorimetric Methods

  • Baek, Seung-Hwa;Shin, Ji-Hee;Chung, Woo-Young;Han, Du-Seok
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • Cannabidiol derivatives (1, 2 and 3), 5-fluorouracil (4, 5-FU) and adriamycin (5, AM) were tested for their growth inhibitory effects against human tumor cell lines using two different 3-{4,5-dimeth-ylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and sulforhodamine B protein (SRB) assay. The light microscopic study showed morphological changes of the treated cells. Disruptions in cell organelles were determined by colorimetric methods; MTT assay and STB assay. These results suggest that cannabidiol (1, CBD) retains the most growth-inhibitory activity against human tumor cell lines.

  • PDF

A STUDY ON THE CYTOTOXIC EFFECTS OF MITOMYCIN C AND 5-FLUOROURACIL IN CULTURED RAT FIBROBLASTS

  • C. S. M;Park, Hong-Seog;Chung, Yeun-Tai
    • Toxicological Research
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 1991
  • To investigate the cytotoxicity and genotoxicity of the DNA alkylating agnet, mitomycin C and the antimetabolite, 5-Fluorouracil (5-FU) in cultured rat fibroblasts, the colorimetric assay of netural red (NR) for cytotoxicity and for genotoxicity, sister chromatid exchange (SCE) assay and the measurement of the rate of DNA synthesis were performed in cells cultured in media containing various concentrations of mitomycin C and 5-FU. The uptake ability of neutral red decreased does-dependently. NR90 and NR50 values of mitomycin C were 1.49 nM and 6.87mM and 5-FU were 38.4mM AND 284.4Mm respectively.

  • PDF

Efficacy and Safety of Bolus 5-Fluorouracil and L-Leucovorin as Salvage Chemotherapy for Oral Fluoropyrimidine-Resistant Unresectable or Recurrent Gastric Cancer: A Single Center Experience

  • Muranaka, Tetsuhito;Yuki, Satoshi;Komatsu, Yoshito;Sawada, Kentaro;Harada, Kazuaki;Kawamoto, Yasuyuki;Nakatsumi, Hiroshi;Sakamoto, Naoya
    • Journal of Gastric Cancer
    • /
    • v.16 no.3
    • /
    • pp.177-181
    • /
    • 2016
  • Purpose: The International Organization for Standardization-5fluorouracil (FU) 10 trial found that bolus 5-FU and l-leucovorin was not inferior to S-1 in the treatment of gastric cancer (GC). Continuous 5-FU and the rapid injection of 5-FU have different anti-cancer effects. Thus, bolus 5-FU and l-leucovorin treatment might be useful for oral FU-resistant GC. Materials and Methods: We retrospectively analyzed the medical records of all patients with S-1 or capecitabine-resistant, unresectable, or recurrent GC treated with bolus 5-FU and l-leucovorin between January 2010 and December 2015 at Hokkaido University Hospital. The bolus 5-FU and l-leucovorin regimen consisted of intravenous l-leucovorin ($250mg/m^2/2h$) and bolus 5-FU ($600mg/m^2$) administered once weekly followed by a 2-week rest period; each cycle was repeated every 8 weeks. Results: A total of 14 patients were identified. The disease control rate was 35.7%. The median progression-free survival was 1.6 months (95% confidence interval [CI], 1.3~2.0 months), and the median overall survival was 6.3 months (95% CI, 4.7~7.9 months). No patient died from treatment-related causes. The most common severe adverse event associated with bolus 5-FU and l-leucovorin was neutropenia, which occurred in 21.4% of patients. Conclusions: Bolus 5-FU and l-leucovorin treatment might be useful for oral FU-resistant GC. We are planning a multi-center prospective phase II trial to evaluate the efficacy and safety of bolus 5-FU and l-leucovorin treatment for pre-treated unresectable or recurrent GC to confirm the results of this limited, retrospective study.

Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells (인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석)

  • Kim Mi-Young;Son Jung-Kyu;Lee Suk-Kyeong;Ku Hyo-Jeong
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

Induction of G1 Phase Cell Cycle Arrest and Apoptotic Cell Death by 5-Fluorouracil in Ewing′s Sarcoma CHP-100 Cells (CHP-100 Ewing′s 육종세포에서 5-fluorouracil에 의한 G1 arrest 유도 및 apoptosis 유발에 관한 연구)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1015-1021
    • /
    • 2016
  • 5-fluorouracil (5-FU), a pyrimidine analog, is a widely used anticancer drug, which works through irreversible inhibition of thymidylate synthase. In the present study, it was investigated the anti-proliferative effects and molecular mechanisms of 5-FU using Ewing's Sarcoma CHP-100 Cells. The present data indicated that treatment of 5-FU to CHP-100 cells induced a G1 phase arrest of the cell cycle in a time-dependent manner. 5-FU-induced G1 arrest was correlated with the accumulation of the hypophosphorylated form of the retinoblastoma protein (pRB) and association of pRB with the transcription factors E2F-1 and E2F-4. Although 5-FU treatment did affect the levels of cyclin-dependent kinases, the levels of cyclin A and B were markedly down-regulated as compared with the untreated control group. In addition, 5-FU-induced G1 arrest of CHP-100 cells was also associated with the induction of apoptosis, as determined by apoptotic cell morphologies, degradation of poly(ADP-ribose) polymerase and Annexin V staining. Furthermore, 5-FU induced the loss of mitochondrial membrane potential with up-regulated pro-apoptotic Bax expression, down-regulated anti-apoptotic Bcl-2 expression and cytochrome c release from mitochondria to cytosol. Collectively, the data suggest that 5-FU is effective in inducing cell growth reduction and apoptosis, in part, by reducing phosphorylation of pRB and activating mitochondrial dysfunction in CHP-100 cells.

Boron Trifluoride Etherate on Silica-A Modified Lewis Acid Reagent (VII). Antitumor Activity of Cannabigerol Against Human Oral Epitheloid Carcinoma Cells

  • Baek, Seung-Hwa;Kim, Young-Ok;Kwag, Jung-Suk;Choi, Kyw-Eun;Jung, Woo-Young;Han, Du-Seok
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.353-356
    • /
    • 1998
  • Geraniol (1), olivetol (2), cannabinoids (3 and 4) and 5-fluorouracil (5) were tested for their growth inhibitory effects against human oral epitheloid carcinoma cell lines (KB) and NIH 3T3 fibrobalsts using two different 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and sulforhodamine B protein (SRB) assay. Cannabigerol (3) exhibited the highest growth-inhibitory activity against the cancer cell lines.

  • PDF

Characterization and Resistance Mechanisms of A 5-fluorouracil-resistant Hepatocellular Carcinoma Cell Line

  • Gu, Wei;Fang, Fan-Fu;Li, Bai;Cheng, Bin-Bin;Ling, Chang-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4807-4814
    • /
    • 2012
  • Purpose: The chemoresistance of human hepatocellular carcinoma (HCC) to cytotoxic drugs, especially intrinsic or acquired multidrug resistance (MDR), still remains a major challenge in the management of HCC. In the present study, possible mechanisms involved in MDR of HCC were identified using a 5-fluorouracil (5-FU)-resistant human HCC cell line. Methods: BEL-7402/5-FU cells were established through continuous culturing parental BEL-7402 cells, imitating the pattern of chemotherapy clinically. Growth curves and chemosensitivity to cytotoxic drugs were determined by MTT assay. Doubling times, colony formation and adherence rates were calculated after cell counting. Morphological alteration, karyotype morphology, and untrastructure were assessed under optical and electron microscopes. The distribution in the cell cycle and drug efflux pump activity were measured by flow cytometry. Furthermore, expression of potential genes involved in MDR of BEL-7402/5-FU cells were detected by immunocytochemistry. Results: Compared to its parental cells, BEL-7402/5-FU cells had a prolonged doubling time, a lower mitotic index, colony efficiency and adhesive ability, and a decreased drug efflux pump activity. The resistant cells tended to grow in clusters and apparent changes of ultrastructures occurred. BEL-7402/5-FU cells presented with an increased proportion in S and G2/M phases with a concomitant decrease in G0/G1 phase. The MDR phenotype of BEL-7402/5-FU might be partly attributed to increased drug efflux pump activity via multidrug resistance protein 1 (MRP1), overexpression of thymidylate synthase (TS), resistance to apoptosis by augmentation of the Bcl-xl/Bax ratio, and intracellular adhesion medicated by E-cadherin (E-cad). P-glycoprotein (P-gp) might play a limited role in the MDR of BEL-7402/5-FU. Conclusion: Increased activity or expression of MRP1, Bcl-xl, TS, and E-cad appear to be involved in the MDR mechanism of BEL-7402/5-FU.

Effect of Ziziphi Jujubae Semen on 5-Fluorouracil Induced cytotoxicity in Cultured Vestibular Neurons (배양전정신경세포에 있어서 5-Fluorouracil의 세포독성에 대한 산조인의 효과)

  • Son Il Hong;Lee Jung Hun;Choi Yu Sun;Lee Jae Kyoo;Kim Hyung Su;Lee Yong Suk;Lee Whan Bong;Choi Ki Wook;Min Bu Ki;Kim Sang Su;Lee Kang Chang;Ryu Myeung Hwan;Song Ho Joon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.146-149
    • /
    • 2002
  • To evaluate the protective effect of Ziziphi Jujubae Semen(ZJS) on 5-Fluorouracil(5-Fu) in cultured vestibular neurons(VN), neurotoxicity was assessed by XTT assay after VN was exposed to 3-24ug/ml 5-Fu for 48 hours. and also, the neuroprotective effect of ZJS was measured by XTT assay in these cultrures. Cell viability was remarkably decreased dose-dependently, after the treatment with 12ug/ml 5-Fu to cultured VN for 48 hours. In the neuroprotective effect of ZJS on the toxicity induced by 5-Fu, ZJS prevented the neurotoxicity induced by 5-Fu in these cultures. From above the results, it suggests that 5-Fu is toxic in cultured VN and herb extract, ZJS has protective effect over the neurotoxicity induced by 5-Fu.