Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.069

Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells  

Yao, Cheng Wen (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Kang, Kyoung Ah (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Piao, Mei Jing (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Ryu, Yea Seong (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Fernando, Pattage Madushan Dilhara Jayatissa (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Oh, Min Chang (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Park, Jeong Eon (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Shilnikova, Kristina (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Na, Soo-Young (School of Medicine No.2, Jeju National University)
Jeong, Seung Uk (School of Medicine No.2, Jeju National University)
Boo, Sun-Jin (School of Medicine No.2, Jeju National University)
Hyun, Jin Won (School of Medicine No.1 and Institute for Nuclear Science and Technology, Jeju National University)
Publication Information
Biomolecules & Therapeutics / v.25, no.3, 2017 , pp. 315-320 More about this Journal
Abstract
We investigated the role of autophagy in SNUC5/5-FUR, 5-fluorouracil (5-FU) resistant SNUC5 colon cancer cells. SNUC5/5-FUR cells exhibited low level of autophagy, as determined by light microscopy, confocal microscopy, and flow cytometry following acridine orange staining, and the decreased level of GFP-LC3 puncta. In addition, expression of critical autophagic proteins such as Atg5, Beclin-1 and LC3-II and autophagic flux was diminished in SNUC5/5-FUR cells. Whereas production of reactive oxygen species (ROS) was significantly elevated in SNUC5/5-FUR cells, treatment with the ROS inhibitor N-acetyl cysteine further reduced the level of autophagy. Taken together, these results indicate that decreased autophagy is linked to 5-FU resistance in SNUC5 colon cancer cells.
Keywords
Autophagy; 5-Fluorouracil; SNUC5/5-FUR; Reactive oxygen species; Colon cancer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, A. D., Kang, K. A., Kim, H. S., Kim, D. H., Choi, Y. H., Lee, S. J. and Hyun, J. W. (2013) A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 4, e750.   DOI
2 Kim, A. Y., Kwak, J. H., Je, N. K., Lee, Y. H. and Jung, Y. S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol. Res. 31, 151-156.   DOI
3 Kim, B. W., Kwon, D. H. and Song, H. K. (2016) Structure biology of selective autophagy receptors. BMB Rep. 49, 73-80.   DOI
4 Ku, J. L. and Park, J. G. (2005) Biology of SNU cell lines. Cancer Res. Treat. 37, 1-19.   DOI
5 Lee, T. B. and Choi, C. H. (2009) Detection of drug transporter expression using a 25-multiplex RT-PCR assay. Biotechnol. Lett. 31, 1485-1492.   DOI
6 Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T. and Kuwano, H. (2009) Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann. Surg. Oncol. 16, 761-771.   DOI
7 Liu, E. Y. and Ryan, K. M. (2012) Autophagy and cancer-issues we need to digest. J. Cell Sci. 125, 2349-2358.   DOI
8 Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338.   DOI
9 Mathew, R., Kongara, S., Beaudoin, B., Karp, C. M., Bray, K., Degenhardt, K., Chen, G., Jin, S. and White, E. (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367-1381.   DOI
10 Morselli, E., Galluzzi, L., Kepp, O., Marino, G., Michaud, M., Vitale, I., Maiuri, M. C. and Kroemer, G. (2011) Oncosuppressive functions of autophagy. Antioxid. Redox Signal. 14, 2251-2269.   DOI
11 Codogno, P., Mehrpour, M. and Proikas-Cezanne, T. (2011) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7-12.   DOI
12 Bijnsdorp, I. V., Peters, G. J., Temmink, O. H., Fukushima, M. and Kruyt, F. A. (2010) Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int. J. Cancer 126, 2457-2468.
13 Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
14 Choi, C. H., Lee, T. B., Lee, Y. A., Choi, S. and Kim, K. J. (2011) Up-regulation of cyclooxygenase-2-derived prostaglandin E2 in colon cancer cells resistant to 5-fluorouracil. J. Korean Surg. Soc. 81, 115-121.   DOI
15 Dewaele, M., Maes, H. and Agostinis, P. (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838-854.   DOI
16 Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K. and Mizushima, N. (2011) Autophagy- deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800.   DOI
17 Djavaheri-Mergny, M., Amelotti, M., Mathieu, J., Besancon, F., Bauvy, C., Souquere, S., Pierron, G. and Codogno, P. (2006) $NF-{\kappa}B$ activation represses tumor necrosis factor-$\alpha$-induced autophagy. J. Biol. Chem. 281, 30373-30382.   DOI
18 Nordman, I. C., Iyer, S., Joshua, A. M. and Clarke, S. J. (2006) Advances in the adjuvant treatment of colorectal cancer. ANZ J. Surg. 76, 373-380.   DOI
19 Sasaki, K., Tsuno, N. H., Sunami, E., Kawai, K., Hongo, K., Hiyoshi, M., Kaneko, M., Murono, K., Tada, N., Nirei, T., Takahashi, K. and Kitayama, J. (2012) Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in vivo study. Anticancer Drugs 23, 675-682.   DOI
20 Sasaki, K., Tsuno, N., Sunami, E., Tsurita, G., Kawai, K., Okaji, Y., Nishikawa, T., Shuno, Y., Hongo, K., Hiyoshi, M., Kaneko, M., Kitayama, J., Takahashi, K. and Nagawa, H. (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10, 370.   DOI
21 Grem, J. L. (2000) 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest. New Drugs 18, 299-313.   DOI
22 Wu, M., Lao, Y., Xu, N., Wang, X., Tan, H., Fu, W., Lin, Z. and Xu, H. (2015) Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death. Phytomedicine 22, 902-910.   DOI
23 Yorimitsu, T. and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12, 1542-1552.   DOI
24 Fan, C., Wang, W., Zhao, B., Zhang, S. and Miao, J. (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg. Med. Chem. 14, 3218-3222.   DOI
25 Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12.   DOI
26 Gozuacik, D. and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906.   DOI
27 Jisun, L., Samantha, G. and Jianhua, Z. (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523-540.   DOI
28 Jung, G. R., Kim, K. J., Choi, C. H., Lee, T. B., Han, S. I., Han, H. K. and Lim, S. C. (2007) Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin. Pharmacol. Toxicol. 101, 277-285.   DOI
29 Karantza-Wadsworth, V., Patel, S., Kravchuk, O., Chen, G., Mathew, R., Jin, S. and White, E. (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621-1635.   DOI
30 Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728.   DOI
31 Kang, K. A., Piao, M. J., Kim, K. C., Kang, H. K., Chang, W. Y., Park, I. C., Keum, Y. S., Surh, Y. J. and Hyun, J. W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells:involvement of TET-dependent DNA demethylation. Cell Death Dis. 5, e1183.   DOI