• Title/Summary/Keyword: 5'-Modification

Search Result 2,294, Processing Time 0.028 seconds

Gear Teeth Modification for a 2.5MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 치형수정)

  • Lee, Hyoung Woo;Kang, Dong-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2014
  • This paper reports a method to modify the gear tooth profile of a wind turbine gearbox to reduce the noise caused by the impact of the gear teeth. The major causes of tooth impact are the elastic deformation of the gear teeth, shafts, and case of the gearbox under loading, and the fabrication tolerances in gear manufacturing. In this study, the tooth profile was modified considering the elastic deformation of the gear tooth and the tooth lead modification to compensate for tooth interference in the lead direction as a result of shaft deformations. The method was applied to the gearbox of a 2.5MW wind turbine, and the transmission error was characterized before and after modifying the gear teeth. For the modified gear teeth, the transmission error (67.6%) was lower by 17.8%. Additionally, the gear contact stress was reduced by 6.3%, to 22.3%.

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

Effect of NH3 plasma on thin-film composite membrane: Relationship of membrane and plasma properties

  • Kim, Eun-Sik;Deng, Baolin
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.109-126
    • /
    • 2013
  • Surface modification by low-pressure ammonia ($NH_3$) plasma on commercial thin-film composite (TFC) membranes was investigated in this study. Surface hydrophilicity, total surface free energy, ion exchange capacity (IEC) and zeta (${\zeta}$)-potentials were determined for the TFC membranes. Qualitative and quantitative analyses of the membrane surface chemistry were conducted by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy. Results showed that the $NH_3$ plasma treatment increased the surface hydrophilicity, in particular at a plasma treatment time longer than 5 min at 50 W of plasma power. Total surface free energy was influenced by the basic polar components introduced by the $NH_3$ plasma, and isoelectric point (IEP) was shifted to higher pH region after the modification. A ten (10) min $NH_3$ plasma treatment at 90 W was found to be adequate for the TFC membrane modification, resulting in a membrane with better characteristics than the TFC membranes without the modification for water treatment. The thin-film chemistry (i.e., fully-aromatic and semi-aromatic nature in the interfacial polymerization) influenced the initial stage of plasma modification.

Impact of a Lifestyle Modification Program on Menstrual Irregularity among Overweight or Obese Women with Polycystic Ovarian Syndrome

  • Marzouk, Tyseer;Nabil, Hanan;Senna, Mohammed
    • Women's Health Nursing
    • /
    • v.21 no.3
    • /
    • pp.161-170
    • /
    • 2015
  • Purpose: This study aimed to evaluate the impact of a lifestyle modification program on menstrual irregularity among overweight and obese women with polycystic ovarian syndrome. Methods: A quasi experimental research design was used to conduct this study on 82 women with polycystic ovarian syndrome at the Gynecology and Obesity clinics of Mansoura University Hospital, Egypt. Two groups were included; the study group received a lifestyle modification program for 48 weeks, while the control group was not subjected to this program. Data collection was done for the following variables, a structured interview questionnaire was used to assess the women's general characteristics, menstrual patterns, and 24-hour dietary recall and the researcher took anthropometric measurements and assessed hirsutism by the Ferriman-Gallwey scale. Results: After one year of lifestyle modification, the number of menstrual cycles significantly increased from $2.7{\pm}1.6$ to $6.9{\pm}1.5$ (t=12.26, p<.001) in the study group compared to insignificant minor changes among the control group (t=0.69, p=.488). Additionally, 58.5% were menstruating regularly compared to none in the control group (${\chi}^2=33.93$, p<.001). Conclusion: Participating in a lifestyle modification program was effective in reducing menstrual cycle's irregularity among overweight and obese women with PCOS. Thus, it is recommended to motivate the nurses in counseling the PCOS women on lifestyle modifications.

Microwave Absorbing Characteristics of Epoxy Composites Containing Carbon Black and Carbon Fibers (카본블래랙과 탄소섬유를 포함하는 에폭시 복합체의 마이크로파 흡수 특성)

  • Lv, Xiao;Yang, Shenglin;Jin, Junhong;Zhang, Liang;Li, Guang;Jiang, Jianming
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.420-428
    • /
    • 2009
  • In this study, the composites containing carbon black (CB) or carbon fibers were prepared, and the microwave absorbing properties and the absorption mechanism of them were investigated and discussed in the frequency range of 2-18 GHz, respectively. The optimum mass fraction of CB has been found as 6%, and the carbon fibers were discovered to absorb radar wave either under parallel or vertical polarization, the suitable gap distance between each bundle of which was 5 mm. According to the results of the single constitute absorber samples, the structured composites with the two kinds of absorbers combination were fabricated and studied at 2-18 GHz. The top layer absorbers affect the absorption performance a lot; the maximum reflection loss of composites with CB as top layer absorbers was -31.8 dB with the frequency range of 2.4 GHz below -10 dB, and the other type with CFs as the top layer absorbers obtained the reflection loss peak value of -31.4 dB with 2 GHz below-10 dB.

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Estimation of Response Modification Factor and Nonlinear Displacement for Moment Resisting Reinforced Concrete Frames (철근콘크리트 연성 모멘트골조에 대한 반응수정계수와 비선형 변위량의 평가)

  • 김길환;전대한;이상호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 2002
  • The purpose of this study is to provide a fundamental data of earthquake resistant design through the estimation of the response modification factor and nonlinear displacement for moment resisting reinforced concrete frames by linear and nonlinear static analysis. The analysis models are designed in accordance with AIK code and then, estimated the response modification factor and nonlinear displacement of the buildings. The parameters such as story numbers(10, 20, 30), plan ratios(1:1, 1:2) and analysis types(2D, 3D) of building structure are chosen for use in this study. After comparing the results of linear and nonlinear static analysis, the response modification factor is obtained as the product of four factors: ductility factor, strength factor, damping factor and redundancy factor. The response modification factor are close to 3.5 in case of 2 span, 4.3 in case of 3 span and 5.0 in case 4 or more span models regardless number of stories and plan ratios. The nonlinear displacement is evaluated from the ratio of story drift angle(nonlinear drift/linear drift). The ratio of story drift angle increases as story numbers increase and the value varies from 5.85 to 9.34.

Improvement of adhesion strength of Butadiene Rubber using Atmospheric Plasma (대기압 플라즈마를 이용한 부타디엔고무 소재의 접착력 개선)

  • Seul, Soo Duk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.556-560
    • /
    • 2010
  • An atmospheric surface modification using plasma treatment method was applied to butadiene rubber to improve its adhesion strength by plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas(nitrogen, argon, oxygen, air), gas flow rate(30~100 mL/min), treated time(0~30 s) and primer modification method(GMA, 2-HEMA) were examined in a plate type plasma reactor. The results of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. As the gas flow rate and treated time increases the contact angle decreases. The greatest adhesion strength was achieved at optimum condition such as flow rate of 60 mL/min, treated time 5 s and modification primer containing 2-HEMA for air. Due to the atmospheric surface modification using plate plasma method consequently reduced the wettability of butadiene rubber and resulted in the improvement of the adhesion.

A Study on the Response Modification Factor for a 5-Story Reinforced Concrete IMRF (5층 철근콘크리트 중간모멘트골조의 반응수정계수에 관한 연구)

  • Kang, Suk-Bong;Lim, Byeong-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.13-21
    • /
    • 2012
  • In this study, the response modification factor for a RC IMRF is evaluated via pushover analysis, where 5-story structures were designed in accordance with KBC2009. The bending moment-curvature relationship for beams and columns was identified with a fiber model, and the bending moment-rotation relationship for beam-column joints was calculated using a simple and unified joint shear behavior model and the moment equilibrium relationship for the joint. The results of the pushover analysis showed that the strength of the structure was overestimated with negligence of the inelastic shear behavior of the beam-column joint, and that the average response modification factor for category C was 7.78 and the factor for category D was 3.64.