Browse > Article
http://dx.doi.org/10.12989/mwt.2013.4.2.109

Effect of NH3 plasma on thin-film composite membrane: Relationship of membrane and plasma properties  

Kim, Eun-Sik (Department of Civil & Environmental Engineering, University of Missouri)
Deng, Baolin (Department of Chemical Engineering, University of Missouri)
Publication Information
Membrane and Water Treatment / v.4, no.2, 2013 , pp. 109-126 More about this Journal
Abstract
Surface modification by low-pressure ammonia ($NH_3$) plasma on commercial thin-film composite (TFC) membranes was investigated in this study. Surface hydrophilicity, total surface free energy, ion exchange capacity (IEC) and zeta (${\zeta}$)-potentials were determined for the TFC membranes. Qualitative and quantitative analyses of the membrane surface chemistry were conducted by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy. Results showed that the $NH_3$ plasma treatment increased the surface hydrophilicity, in particular at a plasma treatment time longer than 5 min at 50 W of plasma power. Total surface free energy was influenced by the basic polar components introduced by the $NH_3$ plasma, and isoelectric point (IEP) was shifted to higher pH region after the modification. A ten (10) min $NH_3$ plasma treatment at 90 W was found to be adequate for the TFC membrane modification, resulting in a membrane with better characteristics than the TFC membranes without the modification for water treatment. The thin-film chemistry (i.e., fully-aromatic and semi-aromatic nature in the interfacial polymerization) influenced the initial stage of plasma modification.
Keywords
thin-film composite; modification; membranes; $NH_3$ plasma; physico-chemical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Afonso, M.D. (2006), "Surface charge on loose nanofiltration membranes", Desalination, 191(1-3), 262-272.   DOI   ScienceOn
2 Belfer, S., Purinson, Y. and Kedem, O. (1998), "Surface modification of commercial polyamide reverse osmosis membranes by radical grafting: An ATR-FTIR study", Acta Polym., 49(10-11), 574-582.   DOI
3 Bhut, B.V., Wickramasinghe, S.R. and Husson, S.M. (2008), "Preparation of high-capacity, weak anion-exchange membranes for protein separations using surface-initiated atom transfer radical polymerization", J. Membr. Sci., 325(1), 176-183.   DOI   ScienceOn
4 Brant, J.A., Johnson, K.M. and Childress, A.E. (2006), "Characterizing NF and RO membrane surface heterogeneity using chemical force microscopy", Colloids Surf., A, 280(1-3), 45-57.   DOI   ScienceOn
5 Bryjak, M., Gancarz, I., Pozniak, G. and Tylus, W. (2002), "Modification of polysulfone membranes 4. Ammonia plasma treatment", Eur. Polym. J., 38(4), 717-726.   DOI   ScienceOn
6 Cantin, S., Bouteau, M., Benhabib, F. and Perrot, F. (2006), "Surface free energy evaluation of well-ordered Langmuir-Blodgett surfaces: Comparison of different approaches", Colloids Surf., A, 276(1-3), 107-115.   DOI   ScienceOn
7 Castro Vidaurre, E.F., Achete, C.A., Simao, R.A. and Habert, A.C. (2001), "Surface modification of porous polymeric membranes by RF-plasma treatment", Nucl. Instrum. Methods Phys. Res., Sect. B, 175-177, 732-736.   DOI   ScienceOn
8 Chen, J.-R. and Wakida, T. (1997), "Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma", J. Appl. Polym. Sci., 63(13), 1733-1739.   DOI   ScienceOn
9 Childress, A.E. and Elimelech, M. (1996), "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes", J. Membr. Sci., 119(2), 253-268.   DOI   ScienceOn
10 Ciszewski, A., Kunicki, J. and Gancarz, I. (2007), "Usefulness of microporous hydrophobic polypropylene membranes after plasma-induced graft polymerization of acrylic acid for high-power nickel-cadmium batteries", Electrochim. Acta, 52(16), 5207-5212.   DOI   ScienceOn
11 Fievet, P., Szymczyk, A. and Sba, M. (2006), "Tangential streaming potential as a tool in the characterization of microporous membranes", Desalination, 199(1-3), 18-19.   DOI   ScienceOn
12 Freger, V., Gilron, J. and Belfer, S. (2002), "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209(1), 283-292.   DOI   ScienceOn
13 Gancarz, I., Pozniak, G., Bryjak, M. and Tylus, W. (2002), "Modification of polysulfone membranes 5. Effect of n-butylamine and allylamine plasma", Eur. Polym. J., 38(10), 1937-1946.   DOI   ScienceOn
14 Gohil, G.S., Nagarale, R.K., Binsu, V.V. and Shahi, V.K. (2006), "Preparation and characterization of monovalent cation selective sulfonated poly(ether ether ketone) and poly(ether sulfone) composite membranes", J. Colloid Interface Sci., 298(2), 845-853.   DOI   ScienceOn
15 Hu, K. and Dickson, J.M. (2007), "Development an characterization of poly(vinylidene fluoride)-poly(acrylic acid) pore-filled pH-sensitive membranes", J. Membr. Sci., 301(1-2), 19-28.   DOI   ScienceOn
16 Ishitsuka, M., Hara, S., Mukaida, M., Haraya, K., Kita, K. and Kato, K. (2008), "Hydrogen separation from dry gas mixtures using a membrane module consisting of palladium-coated amorphous-alloy", Desalination, 234(1-3), 293-299.   DOI   ScienceOn
17 Kim, E.-S., Kim, Y.J., Yu, Q. and Deng, B. (2009), "Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF)", J. Membr. Sci., 344(1-2), 71-81.   DOI   ScienceOn
18 Kim, E.S., Yu, Q. and Deng, B. (2011), "Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling", Appl. Surf. Sci., 257(23), 9863-9871.   DOI   ScienceOn
19 Kim, S.H., Kwak, S.Y., Sohn, B.H. and Park, T.H. (2003), "Design of $TiO_{2}$ NP self-assembled aromatic polyamide TFC membrane as an approach to solve biofouling problem", J. Membr. Sci., 211(1), 157-165.   DOI   ScienceOn
20 Korikov, A.P., Kosaraju, P.B. and Sirkar, K.K. (2006), "Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films", J. Membr. Sci., 279(1-2), 588-600.   DOI   ScienceOn
21 Kull, K.R., Steen, M.L. and Fisher, E.R. (2005), "Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes", J. Membr. Sci., 246(2), 203-215.   DOI   ScienceOn
22 Kwon, O.J., Myung, S.W., Lee, C.S. and Choi, H.S. (2006), "Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas $(Ar/O_{2})$ atmospheric pressure plasma", J. Colloid Interface Sci., 295(2), 409-416.   DOI   ScienceOn
23 Lappan, U., Buchhammer, H.M. and Lunkwitz, K. (1999), "Surface modification of poly (tetrafluoroethylene) by plasma pretreatment and adsorption of polyelectrolytes", Polymer, 40(14), 4087-4091.   DOI   ScienceOn
24 Lazea, A., Kravets, L.I., Albu, B., Ghica, C. and Dinescu, G. (2005), "Modification of polyester track membranes by plasma treatments", Surf. Coat. Technol., 200(1-4), 529-533.   DOI   ScienceOn
25 Manttari, M., Viitikko, K. and Nystr, M. (2006), "Nanofiltration of biologically treated effluents from the pulp and paper industry", J. Membr. Sci., 272(1-2), 152-160.   DOI   ScienceOn
26 Mason, M., Vercruysse, K.P., Kirker, K.R., Frisch, R., Marecak, D.M., Prestwich, G.D. and Pitt, W.G. (2000), "Attachment of hyaluronic acid to polypropylene, polystyrene, and polytetrafluoroethylene", Biomaterials, 21(1), 31-36.   DOI   ScienceOn
27 Matsumoto, H., Konosu, Y., Kimura, N., Minagawa, M. and Tanioka, A. (2007), "Membrane potential across reverse osmosis membranes under pressure gradient", J. Colloid Interface Sci., 309(2), 272-278.   DOI   ScienceOn
28 Pozniak, G., Gancarz, I., Bryjak, M. and Tylus, W. (2002), "N-butylamine plasma modifying ultrafiltration polysulfone membranes", Desalination, 146(1-3), 293-299.   DOI   ScienceOn
29 Prakash Rao, A., Desai, N.V. and Rangarajan, R. (1997), "Interfacially synthesized thin film composite RO membranes for seawater desalination", J. Membr. Sci., 124(2), 263-272.   DOI   ScienceOn
30 Tang, C.Y., Kwon, Y.N. and Leckie, J.O. (2007a), "Probing the nano-and micro-scales of reverse osmosis membranes--A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements", J. Membr. Sci., 287(1), 146-156.   DOI   ScienceOn
31 Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009a), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242(1-3), 149-167.   DOI   ScienceOn
32 Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009b), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242(1-3), 168-182.   DOI   ScienceOn
33 Tang, C.Y. and Leckie, J.O. (2007b), "Membrane Independent Limiting Flux for RO and NF Membranes Fouled by Humic Acid", Environ. Sci. Technol., 41(13), 4767-4773.   DOI   ScienceOn
34 Tian, J., Liang, H., Yang, Y., Tian, S. and Li, G. (2008), "Enhancement of organics removal in membrane bioreactor by addition of coagulant for drinking water treatment", J. Biotechnol., 136(Suppl. 1), S668-S668.
35 Turan, M. (2004), "Influence of filtration conditions on the performance of nanofiltration and reverse osmosis membranes in dairy wastewater treatment", Desalination, 170(1), 83-90.   DOI   ScienceOn
36 Tusek, L., Nitschke, M., Werner, C., Stana-Kleinschek, K. and Ribitsch, V. (2001), "Surface characterization of NH3 plasma treated polyamide 6 foils", Colloids Surf., A, 195(1-3), 81-95.   DOI   ScienceOn
37 Van Oss, C.J. (2006) Interfacial forces in aqueous media CRC/Taylor & Francis.
38 Van Oss, C.J., Good, R.J. and Chaudhury, M.K. (1988), "Additive and nonadditive surface tension components and the interpretation of contact angles", Langmuir, 4(4), 884-891.   DOI
39 Wavhal, D.S. and Fisher, E.R. (2003), "Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling", Langmuir, 19(1), 79-85.   DOI   ScienceOn
40 Wang, M., Wu, L.G., Zheng, X.C., Mo, J.X. and Gao, C.-J. (2006), "Surface modification of phenolphthalein poly(ether sulfone) ultrafiltration membranes by blending with acrylonitrile-based copolymer containing ionic groups for imparting surface electrical properties", J. Colloid Interface Sci., 300(1), 286-292.   DOI   ScienceOn
41 Xu, P. and Drewes, J.g.E. (2006), "Viability of nanofiltration and ultra-low pressure reverse osmosis membranes for multi-beneficial use of methane produced water", Sep. Purif. Technol., 52(1), 67-76.   DOI   ScienceOn
42 Yan, M.G., Liu, L.Q., Tang, Z.Q., Huang, L., Li, W., Zhou, J., Gu, J.S., Wei, X.W. and Yu, H.Y. (2008), "Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion", Chem. Eng. J., 145(2), 218-224.   DOI   ScienceOn
43 Yasuda, H. (2005) Luminous chemical vapor deposition and interface engineering Marcel Dekker, New York.
44 Yu, H.Y., He, X.C., Liu, L.Q., Gu, J.S. and Wei, X.W. (2007), "Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment", Water Res., 41(20), 4703-4709.   DOI   ScienceOn
45 Zhao, Y., Tang, S., Myung, S.W., Lu, N. and Choi, H.S. (2006), "Effect of washing on surface free energy of polystyrene plate treated by RF atmospheric pressure plasma", Polym. Test., 25(3), 327-332.   DOI   ScienceOn
46 Zhou, J., Li, W., Gu, J.-S. and Yu, H.-Y. (2010), "Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment", Membr. Water Treatment, An Int'l J., 1(1).