• 제목/요약/키워드: 4NF

검색결과 1,177건 처리시간 0.031초

Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

  • Cho, Byoung Ok;Ryu, Hyung Won;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Yong Wook;Park, Jong Chun;Jeong, Il Yun
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.288-294
    • /
    • 2014
  • Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6, and IL-$1{\beta}$) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-${\kappa}B$ luciferase activity and NF-${\kappa}B$ DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-${\kappa}B$ activation by inhibiting the degradation of $I{\kappa}B{\alpha}$ and nuclear translocation of p65 subunit of NF-${\kappa}B$. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-${\kappa}B$ activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

Lipid Peroxidation, $NF-_{\kappa}B$ Activation and Cytokine Production in Neutrophil-Stimulated Pancreatic Acinar Cells

  • Kim, Hye-Young;Seo, Jeong-Yeon;Cho, Se-Haeng;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권5호
    • /
    • pp.521-528
    • /
    • 1999
  • Reactive oxygen species (ROS), generated by infiltrating neutrophils, are considered as an important regulator in the pathogenesis and deveolpment of pancreatitis. The present study aims to investigate whether neutrophils primed by $4{\beta}-phorbol\;12{\beta}-myristate\;13{\alpha}-acetate$ (PMA) affect the productions $H_2O_2$ and lipid peroxide (LPO), $NF-_{\kappa}B$ activation and cytokine production in pancreatic acinar cells, and whether these alterations were inhibited by an antioxidant, N-acetylcysteine (NAC) and superoxide dismutase (SOD). $H_2O_2$ (ferrithiocyanate method), LPO (as thiobarbiturate reactive substances), and cytokines $(IL-l{\bata},\; IL-6,\;TNF-{\alpha};\;enzyme-linked\;immunosorbent\;assay)$ and $NF-_{\kappa}B$ activation (electrophoretic mobility shift assay) were analyzed in acinar cells treated with or without PMA-primed neutrophils in the absence or presence of NAC (10 mM) or SOD (300 U/ml). As a result, the productions of H2O2, LPO and $TNF-{\alpha}$ were increased with the ratio of PMA-primed neutrophils to acinar cells while the productions of LPO, $IL-l{\beta},\;IL-6\;and\;TNF-{\alpha}$ were increased with time. PMA-primed neutrophils resulted in the activation of $NF-_{\kappa}B.$ Both NAC and SOD inhibited neutrophil-induced alterations in acinar cells. In conclusion, ROS, generated by neutrophils, activates $NF-_{\kappa}B,$ resulting in upregulation of inflammatary cytokines in acinar cells. Antioxidants might be clinically useful antiinflammatory agents by inhibiting oxidant-mediated activation of $NF-_{\kappa}B$ and decreasing cytokine production.

  • PDF

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • 제34권1호
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Resveratrol Inhibits Nitric Oxide-Induced Apoptosis via the NF-Kappa B Pathway in Rabbit Articular Chondrocytes

  • Eo, Seong-Hui;Cho, Hongsik;Kim, Song-Ja
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.364-370
    • /
    • 2013
  • Resveratrol (trans-3,4'-trihydroxystillbene), a naturally occurring polyphenolic antioxidant found in grapes and red wine, elicits diverse biochemical responses and demonstrates anti-aging, anti-inflammatory, and anti-proliferative effects in several cell types. Previously, resveratrol was shown to regulate differentiation and inflammation in rabbit articular chondrocytes, while the direct production of nitric oxide (NO) in these cells by treatment with the NO donor sodium nitroprusside (SNP) led to apoptosis. In this study, the effect of resveratrol on NO-induced apoptosis in rabbit articular chondrocytes was investigated. Resveratrol dramatically reduced NO-induced apoptosis in chondrocytes, as determined by phase-contrast microscopy, the MTT assay, FACS analysis, and DAPI staining. Treatment with resveratrol inhibited the SNP-induced expression of p53 and p21 and reduced the expression of procaspase-3 in chondrocytes, as detected by western blot analysis. SNP-induced degradation of I-kappa B alpha ($I{\kappa}B-{\alpha}$) was rescued by resveratrol treatment, and the SN50 peptide-mediated inhibition of NF-kappa B (NF-${\kappa}B$) activity potently blocked SNP-induced caspase-3 activation and apoptosis. Our results suggest that resveratrol inhibits NO-induced apoptosis through the NF-${\kappa}B$ pathway in articular chondrocytes.

Investigation of Al-hydroxide Precipitate Fouling on the Nanofiltration Membrane System with Coagulation Pretreatment: Effect of Inorganic Compound, Organic Compound, and Their Combination

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Environmental Engineering Research
    • /
    • 제16권3호
    • /
    • pp.149-157
    • /
    • 2011
  • Nanofiltration (NF) experiments were conducted to investigate fouling of Al-hydroxide precipitate and the influence of organic compound, inorganic compound, and their combination, i.e., multiple foulants. $CaCl_2$ and $MgSO_4$ were employed as surrogates of inorganic compounds while humic acid was used as surrogate of organic compound. The flux attained from NF experiments was fitted with the mathematical fouling model to evaluate the potential fouling mechanisms. Al-hydroxide fouling with a cake formation mechanism had little effect on the NF membrane fouling regardless of the Al concentration. The NF fouling by Al-hydroxide precipitate was deteriorated in presence of inorganic matter. The effect of Mg was more critical in increasing the fouling than Ca. This is because the Mg ions enhanced the resistances of the cake layer accumulated by the Al-hydroxide precipitate on the membrane surfaces. However, the fouling with Mg was dramatically mitigated by adding humic acid. It is interesting to observe that the removal of the conductivity was enhanced to 61.2% in presence of Mg and humic acid from 30.9% with Al-hydroxide alone. The influence of dissolved matter (i.e., colloids) was more negative than particulate matter on the NF fouling for Al-hydroxide precipitate in presence of inorganic and organic matter.

Croton hirtus L'Hér Extract Prevents Inflammation in RAW264.7 Macrophages Via Inhibition of NF-κB Signaling Pathway

  • Kim, Min Jeong;Kim, Ju Gyeong;Sydara, Kong Many;Lee, Sang Woo;Jung, Sung Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.490-496
    • /
    • 2020
  • Consumption of anti-inflammatory nutraceuticals may help treat or prevent inflammation-related illnesses such as diabetes, cardiovascular disease, and cancer. This study evaluated the effect of Croton hirtus L'Hér extract (CHE) on lipopolysaccharide (LPS)-induced nitric oxide (NO) production and nuclear factor kappa-B (NF-κB) signaling cascades. CHE significantly suppressed LPS-induced NO production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 macrophages, although cyclooxygenase (COX)-2 expression was not affected. CHE also suppressed LPS-induced IκB kinase (IKK), IκB, and p65 phosphorylation in RAW264.7 cells. Western blot and immunofluorescence assays of cytosol and nuclear p65 and the catalytic subunit of NF-κB showed that CHE suppressed LPS-induced p65 translocation from the cytosol to the nucleus. CHE also suppressed LPS-induced Interleukin (IL)-6 and tumor necrosis factor (TNF)-α production in RAW264.7 cells. These results suggest that CHE prevents NO-mediated inflammation by suppressing NF-κB and inflammatory cytokines.

Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells

  • Park, Eun-Jung;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • 제14권5호
    • /
    • pp.453-462
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG), an oriental herbal medicine, has been known to improve liver function, and has both anti-inflammatory and antimicrobial properties. However, little is known about the immune-enhancing effects of PG and its mechanism. In this study, we aimed to investigate whether fermented PG extract (FPGE), which has increased platycodin D content, activates the immune response in a murine macrophage cell line, RAW 264.7. MATERIALS/METHODS: Cell viability was determined by Cell Counting Kit-8 assay and the nitric oxide (NO) levels were measured using Griess reagent. Cytokine messenger RNA levels of were monitored by quantitative reverse transcription polymerase chain reaction. To investigate the molecular mechanisms underlying immunomodulatory actions of FPGE in RAW 264.7 cells, we have conducted luciferase reporter gene assay and western blotting. RESULTS: We found that FPGE treatment induced macrophage cell proliferation in a dose-dependent manner. FPGE also modulated the expression of NO and pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The activation and phosphorylation levels of nuclear factor kappa B (NF-κB) were increased by FPGE treatment. Moreover, 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of AMP-activated kinase (AMPK), significantly reduced both lipopolysaccharides- and FPGE-induced NF-κB reporter gene activity. CONCLUSIONS: Taken together, our findings suggest that FPGE may be a novel immune-enhancing agent acting via AMPK-NF-κB signaling pathway.

대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성 (Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge)

  • 이수빈;김윤기;김정순
    • 한국재료학회지
    • /
    • 제16권9호
    • /
    • pp.543-549
    • /
    • 2006
  • Polyimides (PI) are treated with $He/O_2$ and $He/O_2/NF_3$ atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of $NF_3$ that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by $He/O_2/NF_3$ discharge than by $He/O_2$ discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from $65^{\circ}\;to\;9^{\circ}$ by plasma treatment independently of $NF_3$.

Cholera Toxin Disrupts Oral Tolerance via NF-κB-mediated Downregulation of Indoleamine 2,3-dioxygenase Expression

  • Kim, Kyoung-Jin;Im, Suhn-Young
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.175-184
    • /
    • 2017
  • Cholera toxin (CT) is an ADP-ribosylating bacterial exotoxin that has been used as an adjuvant in animal studies of oral immunization. The mechanisms of mucosal immunogenicity and adjuvanticity of CT remain to be established. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), which participates in the induction of immune tolerance, in CT-mediated breakdown of oral tolerance. When IDO-deficient ($IDO^{-/-}$) mice and their littermates were given oral ovalbumin, significant changes in antibody responses, footpad swelling and $CD4^+$ T cell proliferation were not observed in $IDO^{-/-}$ mice. Feeding of CT decreased IDO expression in mesenteric lymph nodes (MLN) and Peyer's patch (PP). CT-induced downregulation of IDO expression was reversed by inhibitors of nuclear factor-kappa B (NF-${\kappa}B$), pyrrolidine dithiocarbamate and p50 small interfering RNA. IDO expression was downregulated by the NF-${\kappa}B$ inducers lipopolysaccharide and tumor necrosis factor-${\alpha}$. CT dampened IDO activity and mRNA expression in dendritic cells from MLN and PP. These data indicate that CT disrupts oral tolerance by activating NF-${\kappa}B$, which in turn downregulates IDO expression. This study betters the understanding of the molecular mechanism underlying CT-mediated abrogation of oral tolerance.

NF-${\kappa}B$ Inhibitory Activities of Phenolic and Lignan Components from the Stems of Acanthopanax divaricatus var. albeofructus

  • Sun, Ya Nan;Li, Wei;Song, Seok Bean;Yan, Xi Tao;Yang, Seo Young;Kim, Young Ho
    • Natural Product Sciences
    • /
    • 제20권4호
    • /
    • pp.232-236
    • /
    • 2014
  • Acanthopanax divaricatus var. albeofructus (ADA) is commonly ingested as a traditional medicine or as a component of a health drink in Korea. In this phytochemical study, nine phenolics (1 - 9) and three lignans (10 - 12) were isolated from the MeOH extract of the stems of ADA. Chemical structures were elucidated by comparing spectroscopic data with reported values. Nuclear factor kappa B ($NF-{\kappa}B$) inhibitory activity of the isolated compounds was evaluated using an $NF-{\kappa}B$ luciferase assay in HepG2 cells. Among them, compounds 1, 3 - 8, and 11 showed significant inhibitory effects on $TNF{\alpha}$-induced $NF-{\kappa}B$ transcriptional activity in a dosedependent manner, with $IC_{50}$ values ranging from 13.25 to $37.36{\mu}M$. Further studies on potential anti-inflammatory effects and the benefits of phenolic and lignan components from ADA are warranted.