• Title/Summary/Keyword: 4D-CT

Search Result 571, Processing Time 0.023 seconds

3D Non-Rigid Registration for Abdominal PET-CT and MR Images Using Mutual Information and Independent Component Analysis

  • Lee, Hakjae;Chun, Jaehee;Lee, Kisung;Kim, Kyeong Min
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.311-317
    • /
    • 2015
  • The aim of this study is to develop a 3D registration algorithm for positron emission tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and functional information, and MR images have high resolution for soft tissue. With the registration technique, the strengths of each modality image can be combined to achieve higher performance in diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized mutual information (NMI)-based global matching and independent component analysis (ICA)-based refinement. In global matching, the field of view of the CT and MR images are adjusted to the same size in the preprocessing step. Then, the target image is geometrically transformed, and the similarities between the two images are measured with NMI. The optimization step updates the transformation parameters to efficiently find the best matched parameter set. In the refinement stage, ICA planes from the windowed image slices are extracted and the similarity between the images is measured to determine the transformation parameters of the control points. B-spline. based freeform deformation is performed for the geometric transformation. The results show good agreement between PET/CT and MR images.

Effects of Dietary Ca Level and Hormones on Bone Density of Mouse (식이 Ca 수준과 호르몬 투여가 생쥐가 골밀도에 미치는 영향)

  • 정차권
    • Journal of Nutrition and Health
    • /
    • v.29 no.9
    • /
    • pp.943-949
    • /
    • 1996
  • Bone mineral density depends largely on the status of dietary minerals such as Ca, P, Mg, and F and proteins, physical activities, parathyroid hormone(PTH), calcitonin(CT), and vitamin D. The decrease of bone density often results in bone fractures and osteoporosis which is prevalent among postmenopausal women. This study was intended to examine the role of parathyroid hormone, calcitonin and cholecaliferol in bone density of mice that were fed different dual photon energy beams. We have measured three major parts of the bone : whole body, head and femur. The results are summarized as follows : 1) Bone mineral density (BMD) was more increased by feeding high Ca diet compared to that of the low Ca diet. 2) Both PTH and Vit D3 enhanced BMD in all of the different Ca levels. 3) When the dietary Ca was deequate CT showed a synergistic effect with PTH in boosting bone density, while CT+Vit D3 showed a negative effect. 4) CT tended to inhibit the effect of increasing bone density by PTH and Vit D3 in medium and low Ca groups. 5) The effect of increasing bone density by PTH in the head of mouse increased when dietary Ca was lower : The increment of bone density by PTH in high, medium, and low Ca was 3%, 8%, 19%, respectively. 6) Femur bone density was affected significantly by dietary Ca levels than hormones. The above observations indicate that bone mineral density can be improved by high dietary Ca and hormone injections including PTH, CT and cholecalciferol, and thus proper dietary and hormonal treatment may be used in preventing bone fractures and osteoporosis.

  • PDF

Application of Dual Tree Complex Wavelet for Performance Improvement of CT Images (CT 영상의 화질개선을 위한 이중트리복합웨이블릿의 적용)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.941-946
    • /
    • 2019
  • Computed tomography (CT) has been increasing in frequency and indications for use in clinical diagnosis and treatment decisions. Multidetector CT has the advantage of shortening the inspection time and obtaining a high resolution image compared to a single detector CT, but has been pointed out the disadvantage of increasing the radiation exposure. In addition, when the low tube voltage is used to reduce the exposure dose in the CT, noise increases relatively. In the existing method, the method of finding the optimal image quality using the method of adjusting the parameters of the image reconstruction method is not a fundamental measure. In this study, we applied a double-tree complex wavelet algorithm and analyzed the results to maintain the normal signal and remove only noise. Experimental results show that the noise is reduced from 8.53 to 4.51 when using a complex oriented 2D method with 100kVp and 0.5sec rotation time. Through this study, it was possible to remove the noise and reduce the patient dose by using the optimal noise reduction algorithm. The results of this study can be used to reduce the exposure of patients due to the low dose of CT.

Making Human Phantom for X-ray Practice with 3D Printing (3D 프린팅을 활용한 일반 X선 촬영 실습용 인체 팬텀 제작)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • General phantom for practical X-ray photography Practical phantom is an indispensable textbook for radiology, but it is difficult for existing commercially available phantom to be equipped with various kinds of phantom because it is an expensive import. Using 3D printing technology, I would like to make the general phantom for practical X-ray photography less expensive and easier. We would like to use a skeleton model that was produced based on CT image data using a 3D printer of FDM (Fused Deposition Modeling) method as a phantom for general X-ray imaging. 3D slicer 4.7.0 program is used to convert CT DICOM image data into STL file, convert it to G-code conversion process, output it to 3D printer, and create skeleton model. The phantom of the completed phantom was photographed by X - ray and CT, and compared with actual medical images and phantoms on the market, there was a detailed difference between actual medical images and bone density, but it could be utilized as a practical phantom. 3D phonemes that can be used for general X-ray practice can be manufactured at low cost by utilizing 3D printers which are low cost and distributed and free 3D slicer program for research. According to the future diversification and research of 3D printing technology, it will be possible to apply to various fields such as health education and medical service.

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

Evaluation of Images Depending on an Attenuation Correction in a Brain PET/CT Scan

  • Choi, Eun-Jin;Jeong, Mon-Taeg;Dong, Kyung-Rae;Kwak, Jong-Gil;Choi, Ji-Won;Ryu, Jae-Kwang
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.267-276
    • /
    • 2018
  • A Hoffman 3D Brain Phantom was used to evaluate two PET/CT scanners, BIO_40 and D_690, according to the radiation dose of CT (low, medium and high) at a fixed kilo-voltage-peak (kVp) with the tube current(mA) varied in 17~20 stages(Bio_40 PET/CT scanner: the tube voltage was fixed to 120 kVp, the effective tube current(mAs) was increased from 33 mAs to 190 mAs in 10 mAs increments, D_690 PET/CT scanner: the tube voltage was fixed to 140 kVp, tube current(mA) was increased from 10 mAs to 200 mAs in 10 mAs increments). After obtaining the PET image, an attenuation correction was conducted based on the attenuation map, which led to an analysis of the difference in the image. First, the ratio of white to gray matter for each scanner was examined by comparing the coefficient of variation (CV) depending on the average ratio. In addition, a blind test was carried out to evaluate the image. According to the study results, the BIO_40 and D_690 scanners showed a <1% change in CV value due to the tube current conversion. The change in the coefficients of white and gray matter showed that the Z value was negative for both scanners, indicating that the coefficient of gray matter was higher than that of white matter. Moreover, no difference was observed when the images were compared in a blind test.

The Study on the Implementation of the X-Ray CT System Using the Cone-Beam for the 3D Dynamic Image Acquisition (3D 동영상획득을 위한 Cone-Beam 형 X-Ray CT 시스템 구현에 관한 연구)

  • Jeong, Chan-Woong;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • In this paper, we presents a new cone beam computerized tomography (CB CT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time.

The Algorithm Improved the Speed for the 3-Dimensional CT Video Composition (3D CT 동영상 구성을 위한 속도 개선 알고리즘)

  • Jeong, Chan-Woong;Park, Jin-Woo;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • This paper presents a new fast algorithm, rotation-based method (RBM), for the reconstruction of 3 dimensional image for cone beam computerized tomography (CB CT) system. The system used cone beam has less exposure time of radioactivity than fan beam. The Three-Pass Shear Matrices (TPSM) is applied, that has less transcendental functions than the one-pass shear method to decrease a time of calculations in the computer. To evaluate the quality of the 3-D images and the time for the reconstruction of the 3-D images, another 3-D images were reconstructed by the radon transform under the same condition. For the quality of the 3-D images, the images by radon transform was shown little good quality than REM. But for the time for the reconstruction of the 3-D images REM algorithm was 35 times faster than radon transform. This algorithm offered $4{\sim}5$ frames a second. It meant that it will be possible to reconstruct the 3-D dynamic images in real time.

A study on evaluation of the image with washed-out artifact after applying scatter limitation correction algorithm in PET/CT exam (PET/CT 검사에서 냉소 인공물 발생 시 산란 제한 보정 알고리즘 적용에 따른 영상 평가)

  • Ko, Hyun-Soo;Ryu, Jae-kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • Purpose In PET/CT exam, washed-out artifact could occur due to severe motion of the patient and high specific activity, it results in lowering not only qualitative reading but also quantitative analysis. Scatter limitation correction by GE is an algorism to correct washed-out artifact and recover the images in PET scan. The purpose of this study is to measure the threshold of specific activity which can recovers to original uptake values on the image shown with washed-out artifact from phantom experiment and to compare the quantitative analysis of the clinical patient's data before and after correction. Materials and Methods PET and CT images were acquired in having no misalignment(D0) and in 1, 2, 3, 4 cm distance of misalignment(D1, D2, D3, D4) respectively, with 20 steps of each specific activity from 20 to 20,000 kBq/ml on $^{68}Ge$ cylinder phantom. Also, we measured the distance of misalignment of foley catheter line between CT and PET images, the specific activity which makes washed-out artifact, $SUV_{mean}$ of muscle in artifact slice and $SUV_{max}$ of lesion in artifact slice and $SUV_{max}$ of the other lesion out of artifact slice before and after correction respectively from 34 patients who underwent $^{18}F-FDG$ Fusion Whole Body PET/CT exam. SPSS 21 was used to analyze the difference in the SUV between before and after scatter limitation correction by paired t-test. Results In phantom experiment, $SUV_{mean}$ of $^{68}Ge$ cylinder decreased as specific activity of $^{18}F$ increased. $SUV_{mean}$ more and more decreased as the distance of misalignment between CT and PET more increased. On the other hand, the effect of correction increased as the distance more increased. From phantom experiments, there was no washed-out artifact below 50 kBq/ml and $SUV_{mean}$ was same from origin. On D0 and D1, $SUV_{mean}$ recovered to origin(0.95) below 120 kBq/ml when applying scatter limitation correction. On D2 and D3, $SUV_{mean}$ recovered to origin below 100 kBq/ml. On D4, $SUV_{mean}$ recovered to origin below 80 kBq/ml. From 34 clinical patient's data, the average distance of misalignment was 2.02 cm and the average specific activity which makes washed-out artifact was 490.15 kBq/ml. The average $SUV_{mean}$ of muscles and the average $SUV_{max}$ of lesions in artifact slice before and after the correction show a significant difference according to a paired t-test respectively(t=-13.805, p=0.000)(t=-2.851, p=0.012), but the average $SUV_{max}$ of lesions out of artifact slice show a no significant difference (t=-1.173, p=0.250). Conclusion Scatter limitation correction algorism by GE PET/CT scanner helps to correct washed-out artifact from motion of a patient or high specific activity and to recover the PET images. When we read the image occurred with washed-out artifact by measuring the distance of misalignment between CT and PET image, specific activity after applying scatter limitation algorism, we can analyze the images more accurately without repeating scan.

상부기도 협착의 나선식 CT를 이용한 3차원 영상의 진단적 의의

  • 김승현;김현웅;노영수;임현준;윤대영
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1997.04a
    • /
    • pp.119-119
    • /
    • 1997
  • 상부기도 협착의 원인은 장기간의 기관 삽관, 외상, 감염, 종양, 및 선천적인 결함등에 의해 존재하며, 이에 대한 진단은 단순 촬영이나 전산화 단층 촬영술 등으로 쉽게 진단은 가능하나, 적절한 치료 계획을 세우기 위해서는 그 범위 및 정도를 정확히 파악하는 일이 중요하다 최근 방사선 촬영기술의 발달로 현재의 2차원적 단면 영상에서 3차원적 영상으로 발전해왔으며 상부기도 협착 또한 3차원적 영상으로 진단하려는 노력이 시도되고 있다. 이에 저자들은 최근에 경험한 기관 협착증 7례에서 3D CT를 시행하여 협착 부위의 상태를 기존의 단순 촬영 영상 및 2D CT 영상과 비교하였고, 7례의 기관 협착증 중 4례에서 기관 단단 문합술 및 후두 기관 문합술을 시행한 바 수술시 확인된 협착 상태를 3D CT 영상과 비교하였다.

  • PDF