DOI QR코드

DOI QR Code

The Algorithm Improved the Speed for the 3-Dimensional CT Video Composition

3D CT 동영상 구성을 위한 속도 개선 알고리즘

  • Published : 2009.02.28

Abstract

This paper presents a new fast algorithm, rotation-based method (RBM), for the reconstruction of 3 dimensional image for cone beam computerized tomography (CB CT) system. The system used cone beam has less exposure time of radioactivity than fan beam. The Three-Pass Shear Matrices (TPSM) is applied, that has less transcendental functions than the one-pass shear method to decrease a time of calculations in the computer. To evaluate the quality of the 3-D images and the time for the reconstruction of the 3-D images, another 3-D images were reconstructed by the radon transform under the same condition. For the quality of the 3-D images, the images by radon transform was shown little good quality than REM. But for the time for the reconstruction of the 3-D images REM algorithm was 35 times faster than radon transform. This algorithm offered $4{\sim}5$ frames a second. It meant that it will be possible to reconstruct the 3-D dynamic images in real time.

본 논문에서는 인체에 유해한 방사능 피폭량이 부챗살 형태의 Fan Beam 보다 상대적으로 적은 원추형 Cone Beam CT 시스템을 사용하여 3차원 영상을 빠르게 구성하기 위한 회전 기반법 알고리즘을 제안하였다. 그리고 계산 속도를 빠르게 하기 위하여 초월함수가 더 적은 3단계 회전 행렬을 이용하여 3차원 영상을 구현하였다. 또한 본 연구에서 구성한 영상을 일반적으로 사용되는 라돈 변환 알고리즘으로 구현된 3차원 영상과 비교하여 영상의 질은 평균적으로 단면 영상 당 10% 정도의 오차를 보이며 미약하게 저하되었으나 영상 구성 속도 면에서는 35배 개선됨을 보였다. 이는 대략 초당 $4{\sim}5$ 프레임을 얻을 수 있는 수치이며 간단한 구조를 가진 피사체라면 보다 많은 프레임을 얻을 수 있어 3차원 동영상을 실시간으로 구현할 수 있는 가능성을 보였다.

Keywords

References

  1. Bernd Girood, Gunther Greiner, Heinrich Niemann, Principles of 3D image analysis and Synthesis, Kluwer Academic Pu-blishers, 2006
  2. Avinash C. Kak, Malcolm Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988
  3. P. Schroder and J. B. Salem. "Fast rotation of volume data on parallel architeures. IEEE Visualization '91 Proceedings, pp. 50-57, 1991 https://doi.org/10.1109/VISUAL.1991.175777
  4. Hu H, He HD, Foley WD, Fox SH, "Four multidetector - row helical CT: image qualty and volume coverage speed", Radiology, vol. 215, pp. 55-62, 2000 https://doi.org/10.1148/radiology.215.1.r00ap3755
  5. Hanrahan, Pat. "Three-pass affine tranforms for volume rendering", Computer Graphics, vol. 24, no. 5, pp. 71-77, Nov. 1990 https://doi.org/10.1145/99308.99323
  6. Y.S. Choi, G.T. Kim, E.H. Hwang, "Basic principle of cone beam computed tomography", Korean J Oral Maxillofac Radiol, vol. 36, pp. 123-129, 2006
  7. Subramanian, K. R. and Donald S. Fussell. "Applying space subdivision techniques to volume rendering." In Proceedings of Visualization " vol. 90, pp. 150-159, San Francisco, California, October 1990
  8. V'ezina. Guy, Peter A. Fletcher, and Philip K. Robertson. "Volume rendering on the MasPar MP-1." In 1992 Workshop on Volume Visualization, pp. 3-8, Boston, October 1992 https://doi.org/10.1145/147130.147138
  9. Masahiro Endo, Takanori Tsunoo, Susumu Kandatsu, Shuji Tanada, Hiroshi Aradate, and Yasuo Saito. "Four-dimensional Computed Tomography (4D CT)-Concepts and Preliminary Development,", Radiation Medicine, vol. 21, no. 1, pp. 17-22, 2003
  10. William K. Pratt, Digital Image Processing: PIKS Inside, Third Edition. Pratt, John Wiley & Sons, Inc. 2001
  11. Yagel, Roni and Arie Kaufman. "Template-based volume viewing.", Eurographics vol. 92, pp. 153-167, Cambridge, UK, September 1992
  12. Jean Pouliot, Ali Bani-Hashemi, Josephine Chen, Michelle Svatos, Farhad Ghelmansarai, Matthias Mitschke, Michele Aubin, Ping Xia, Olivier Morin, Kara Bucci, Mack Roach III, Paco Hernandez, Zirao Zheng, Dimitre Hristov, Lynn Verhey, "Low-Dose megavoltage cone-beam CT for radiation therapy.", Int. J. Radiation Oncology Biol. Phys., vol. 61, no. 2, pp. 552-560, 2005 https://doi.org/10.1016/j.ijrobp.2004.10.011
  13. Ying Chen, Pengwei Hao, Jian Yu, "Shear-resize factori-zations for fast multi-modal volume registration.", Int. Con-ference on Image Processing., pp. 1085-1088, 2004 https://doi.org/10.1109/ICIP.2004.1419491