• 제목/요약/키워드: 4-methylcatechol

검색결과 30건 처리시간 0.015초

Cloning and Overexpression of Methylcatechol 2, 3-Dioxygenase Gene from Toluene-Degrading Pseudomonas putida mt-2(pWWO)

  • Lee, Jeong-Rai;Min, Kyung-Rak;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • 제15권4호
    • /
    • pp.360-364
    • /
    • 1992
  • Methylcatechol 2, 3-dioxygenase encoded in pWWO megaplasmid of Pseudomonas putida mt-2 has been cloned and overexpressed in Escherichia coli. This enzyme gene has been localized inside 2. 3-kb XhoI fragment derived from the pWWO megaplasmid. Analysis of enzyme activity and SDS-PAGE showed that the cloned methylcatechol 2, 3-dioxygenase gene in E. coli was about 100 fold overexpressed compared with the parental gene in P. putida mt-2 (pWWO). The cloned enzyme exhibited higher ring-fission activity to catechol than catechol derivatives including 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol.

  • PDF

Reaction Characteristics of 4-Methylcatechol 2,3-Dioxygenase from Pseudomonas putida SU10

  • Ha, You-Mee;Jung, Young-Hee;Kwon, Dae-Young;Kim, Young-Soo;Kim, Chy-Kyung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2000
  • Reaction characteristics of 4-methylcatechol 2,3-dioxygenase (4MC230) purified from Pseudomonas putida SU10 with a higher activity toward 4-methylcatechol than catechol or 3-cethylcatechol were studied by altering their physical and chemical properties. The enzyme exhibited a maximum activity at pH 7.5 and approximately 40% at pH 6.0 for 4-methylcatechol hydrolysis. The optimum temperature for the enzyme was around $35^{\circ}C$, since the enzyme was unstable at higher temperature. Acetone(10%) stabilized the 4MC230. The effects of solvent and other chemicals (inactivator or reactivator) for the reactivation of the 4MC230 were also investigated. Silver nitrate and hydrogen peroxid severely deactivated the enzyme and the deactivation by hydrogen peroxide severely deactivated the enzyme and the deactivation by hydrogen peroxide was mainly due to the oxidation of ferrous ion to ferric ion. Some solvents acted as an activator and protector for the enzyme from deactivation by hydrogen peroxide. Ascorbate, cysteine, or ferrous ion reactivated the deactivated enzyme by hydrogen peroxide. The addition of ferrous ion together with a reducing agent fully recovered the enzyme activity and increased its activity abut 2 times.

  • PDF

신경병증성 통증모델에서 신경영양인자 유도물질의 반복 투여가 척수 아드레날린계에 미치는 영향 (Spinal α2 Adrenoceptor and Antiallodynic Effect by Clonidine after Chronic Administration of 4-Methylcatechol in Neuropathic Rat Pain Model)

  • 정규연;신상욱;최봉수;김철홍;김경훈;김해규
    • The Korean Journal of Pain
    • /
    • 제21권3호
    • /
    • pp.179-186
    • /
    • 2008
  • Background: The adrenergic nervous system in the spinal cord contributes to the development of neuropathic pain after nerve injury. Brain derived neurotrophic factor may facilitate the sympathetic change in the spinal cord and influence the state of neuropathic pain. We probed the effect of chronic repetitive administration of systemic 4-methylcatechol, which is known to be a neurotrophic factor inducer, in a spinal nerve ligation model. Methods: We made the rat neuropathic pain model by the ligation of the L5 spinal nerve. Intraperitoneal 4-methylcatechol ($10{\mu}g/kg$) or the same volume of saline wasadministrated twice daily just after the operation for 7 days. The tactile allodynia was measured by using von Frey filaments and its change was followed up from 3 days after SNL. The lumbosacral enlargement of the spinal cord was taken out and the mRNA contents of the ${\alpha}_2-adrenoceptor$ subtypes were measured by real time polymerase chain reaction and this was then compared with the control groups. The antiallodynic effect of intrathecal clonidine (3, 10, $30{\mu}g$) was evaluated and compared in the 4-methylcatechol treated rats and the control rats. Results: The expression of the ${\alpha}_{2A}$ and ${\alpha}_{2C}$ adrenoceptor subtypes did not change after 4-methylcatechol treatment. Intrathecal clonidine showed an earlier and better effect at the highest dose ($30{\mu}g$ intrathecal), but not with any other doses. Conclusions: Chronic intraperitoneal administration of 4-methylcatechol may improve the effect of intrathecal clonidine, but we could not prove the increase of ${\alpha}_{2A}$ and ${\alpha}_{2C}$ adrenoceptors in the spinal cord of 4-methylcatechol treated rats.

크라프트 리그닌의 염기 촉매 분해(BCD)에 의한 부산물의 조성 분석 (The analysis of products from base-catalyzed depolymerization of kraft lignin)

  • 김석주;김용식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권6호
    • /
    • pp.583-593
    • /
    • 2013
  • 본 연구는 크라프트 리그닌의 염기 촉매 분해(Based Catalyst Depolymerization, BCD)반응에서 생성되는 반응물의 화학적 특성을 조사하였다. 초임계 메탄올을 용매로 하고 염기 촉매로 사용한 NaOH의 농도를 7.5, 3.25, 6.13%로 변화를 주었다. BCD 반응물에서 불용성 고형 부산물, 수용성 부산물과 각 부산물에서 diethyl ether로 추출하여 DEE-1, DEE-2를 얻었고 그 화학적 조성을 분석하였다. 실험 결과 염기의 농도가 높아질수록 불용성 고형 부산물이 많이 생성된 반면 수용성 분액분의 수율은 낮아졌으나 DEE 추출분의 수율은 차이가 없었다. 불용성 부산물에서 추출한 DEE-1은 GC/MS 분석 결과 BHT외에 페놀성 화합물은 검출되지 않았다. 대부분의 저분자 리그닌 분해 산물은 DEE-2에서 GC/MS를 사용하여 30개 이상의 피크가 관찰되었고 21개 성분이 확인되었다. 7.5와 3.25%의 NaOH를 사용한 반응의 DEE-2 주성분은 catechol (20.3, 17.7%), 4-methylcatechol (18.2, 15.6%), 3-methoxycatechol (9.6, 14.5%), syringol (8.9, 10.9%)등으로 주로 catechol 계열의 화합물이었다. 1.63%의 NaOH를 사용한 반응의 DEE-2 주성분은 syringol (22.3%), isovanillic acid (12.6%), 3-methoxycatechol(12.1%), 4-methylcatechol (11.7) 등으로 나타났다. 염기의 농도가 저분자 페놀성 화합물들의 전체적인 수율에는 영향이 없었지만 3.25와 1.63%의 농도를 경계로 성분 조성에 큰 영향을 주는 것을 관찰할 수 있었다.

Purification and Characterization of an Extradiol Dioxygenase Which Preferentially Acts on 4-Methylcatechol

  • Ha, You-Mee;Jung, Young-Hee;Kwon, Dae-Young;Kim, Young-Chang;Kim, Young-Soo;Kim, Chy-Kyung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.249-254
    • /
    • 1999
  • A catechol 2,3-dioxygenase (C23O) was purified to apparent homogeneity from Pseudomonas putida SU10 through several purification steps consisting of ammonium sulfate precipitation and chromatographies on DEAE 5PW, Superdex S-200, and Resource-Q. Gel filtration indicated a molecular mass under nondenaturing conditions of about 130 kDa. The enzyme has a subunit of 34 kDa as was determined by SDS-PAGE. These results suggest that the native enzyme is composed of four identical subunits. The N-terminal amino acid sequence (30 residues) of the enzyme has been determined and exhibits high identity with other extradiol dioxygenases. The reactivity of this enzyme towards catechol and methyl-substituted catechols is somewhat different from that seen for other catechol 2,3-dioxygenases, with 4-methylcatechol cleaved at a higher rate than catechol or 3-methylcatechol. $K_m$ values of the enzyme for these substrates are between 3.5 and 5.7 M.

  • PDF

재조합균주 E. coli CNU312가 생산하는 Catechol 2,3-Dioxygenase의 정제 및 특성 (Purification and Characterization of Catechol 2,3-Dioxygenase from Recombinant Strain E. coli CNU312.)

  • 임재윤;최경호;최병돈
    • 미생물학회지
    • /
    • 제36권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Toluene, phenyl 등의 분해균주인 Burkholderia cepacia G4로부터 tomB 유전자를 클로닝하여 얻은 재조합 균주 E. coli CNU312로부터 catechol 2,3-dioxygenase를 정제하여 효소학적 특성을 조사하였다. Catechol 2,3-dioxygenase는 native 분자량이 약 140.4 kDa이었으며 4개의 동일한 35 kDa subunit로 구성된 homotetramer로 생각된다. Catechol의 $K_(m)$값과 $V_(max)$값은 372.6 $\mu$M과 39.27 U/mg이었으며, 1.56 mM 이상의 기질 농도에서는 활성이 감소되었다. 효소 활성의 최적 pH는 8.0이었으며, pH 7.0-8.0 범위에서 안정하였다. 최적 활성온도는 $40^{\circ}C$였으며, $60^{\circ}C$이상에서 완전히 활성을 상실하였다. 또한 $Fe^(2+)$, $Fe^(3+)$ 를 비롯한 대부분의 금속 이온에 의해 활성이 감소되었으며, $Mg^(2+)$, $K^(+)$에는 영향을 받지 않았다. 효소 활성부위를 알아보기 위해 화학변형제를 처리한 결과, tryptophan과 histidine이 효소 활성부위에 존재하는 것으로 추정된다. 그리고 10%의 유기용매에 안정성을 보이지 않았으며, $H_(2)$$O_(2)$, EDTA, ο-phenanthroline에도 활성이 감소되었다. 또한 2-mercaptoethanol, dithiothreitol, 그리고 ascorbic acid와 같은 환원제에 대해서도 안정성을 보이지 않았다. 이 효소는 catechol에 대해 높은 기질 특이성을 보였으며, 3-methylcatechol, 4-methylcatechol, 그리고 4-chlorocatechol에 대해 약간의 활성을 보였다. 그러나 2,3-dihydroxybiphenyl에 대해서는 거의 활성을 보이지 않았다.

  • PDF

4-Chlorobiphenyl을 분해하는 Pseudomonas sp. P20의 pcb 유전자군의 클로닝 (Cloning of pcb Genes in Pseudomonas sp.P20 Specifying Degradation of 4-Clorobiphenyl)

  • 남정현;김치경
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.353-359
    • /
    • 1994
  • Pseudomonas sp. P20 was a bacterial isolate which has the ability to degrade 4-chlorobi- phenyl(4CB) to 4-chlorobenzoic acid via the process of meta-cleavage. The recombinant plasmid pCK1 was constructed by insetting the 14-kb EcoRI fragment of the chromosomal DNA containing the 4CB-degrading genes into the vector pBluescript SK(+). Subsequently, E. coli XL1-Blue was transformed with the hybrid plasmid producing the recombinant E. coli CK1. The recombinant cells degraded 4CB and 2,3-dihydroxybiphenyl(2,3-DHBP) by the pcbAB and pcbCD gene products, respectively. The pcbC gene was expressed most abundantly at the late exponential phase in E. coli CK1 as well as in Pseudomonas sp. P20, and the level of the pcbC gene product, 2,3-DHBP dioxygenase, expressed in E. coli CK1 was about two-times higher than in Pseudomonas sp. P20. The activities of 2,3-DHBP dioxygenase on catechol and 3-methylcatechol were about 26 to 31% of its activity on 2,3-DHBP, but the enzyme did not reveal any activities on 4-methylcatechol and 4-chlorocatechol.

  • PDF

연안 갯벌에서 분리한 Chloroaniline 화합물 분해 미생물의 특징 (Characterization of Chloroanilines-degrading Bacteria Isolated from Seaside Sediment)

  • 강민승;김영목
    • 한국수산과학회지
    • /
    • 제40권5호
    • /
    • pp.282-287
    • /
    • 2007
  • Chloroanilines are aromatic amines used as intermediate products in the synthesis of herbicides, azo-dyes, and pharmaceuticals. 3,4-dichloroaniline (DCA) is the degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as an active agent in the cosmetic industry. The compound, however, is considered a potential pollutant due to its toxicity and recalcitrant property to humans and other species. With the increasing necessity for bioremediation, we sought to isolate bacteria that degraded 3,4-DCA. A bacterium capable of growth on 3,4-DCA as the sole carbon source was isolated from seaside sediment using a dilution method with a culture enriched in 3,4-DCA. The isolated strain, YM-7 was identified to be Pseudomonas sp. The isolated strain was also able to degrade other chloroaniline compounds. The isolated strain showed a high level of catechol 2,3-dioxygenase activity on exposure to 3,4-DCA, suggesting that this enzyme is an important factor in 3,4-DCA degradation. The activity toward 4-methylcatechol was 53.1% that of catechol, while the activity toward 3-methylcatechol, 4-chlorocatechol and 4,5-chlorocatechol was 18.1, 33.1, and 6.9%, respectively.

Catechol 1,2-Dioxygenase from Rhodococcus rhodochrous N75 Capable of Metabolizing Alkyl-Substituted Catechols

  • Cha Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.778-785
    • /
    • 2006
  • Catechol 1,2-dioxygenase was purified from cells of R. rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single catechol 1,2-dioxygenase was found to be induced with either growth substrate. The enzyme has an estimated $M_r$ of 71,000 consisting of two identical subunits. Catechol 1,2-dioxygenase from R. rhodochrous N75 exhibits some unusual properties including: broad substrate specificity, extradiol cleavage activity with 4-methylcatechol and low $K_m$ values for halocatechols, suggesting that this enzyme is distinct from other known catechol and chlorocatechol 1,2-dioxygenases.

Pseudomonas sp. strain DJ77 균주에서 extradiol dioxygenase 를 암호화하고 있는 phnE 유전자의 염기배열

  • 김영창;신명수;윤길상;박영순;김욱현
    • 미생물학회지
    • /
    • 제30권1호
    • /
    • pp.8-14
    • /
    • 1992
  • Pseudomonas sp. DJ77로부터 extradiol dioxygenase 유전자(phnE)를 클로닝하고 염기배열을 결정하였다. 921 bp의 open reading frame (ORF) 이 존재하였고 개시코돈 앞에서 Shine-Dalgarno sequence를 발견하였다. phnE 유전자에서 만들어지는 PhnE 단백질은 분자량이 34,449 Da 인데 SDS-polycrylamide gel 전기영동에 의해 측정된 분자량과 일치하였다. PhnE는 NahH, XylE, DmpB 등과 아미노산 배열의 상동성의 약 50% 였다. DJ77에는 bphC와 같은 3형의 extradiol dioxygenase 유전자는 발견할 수 없었다. DJ77 과 JM101(pPE17)은 catechol, 3-methylcatechol, 4-methylcatechol, 2, 3-dihydroxybiphenyl 등의 기질을 meta-cleavage 하여 노란색 화합물을 생성할 수 있었다.

  • PDF