Browse > Article

Catechol 1,2-Dioxygenase from Rhodococcus rhodochrous N75 Capable of Metabolizing Alkyl-Substituted Catechols  

Cha Chang-Jun (Department of Biotechnology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.5, 2006 , pp. 778-785 More about this Journal
Abstract
Catechol 1,2-dioxygenase was purified from cells of R. rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single catechol 1,2-dioxygenase was found to be induced with either growth substrate. The enzyme has an estimated $M_r$ of 71,000 consisting of two identical subunits. Catechol 1,2-dioxygenase from R. rhodochrous N75 exhibits some unusual properties including: broad substrate specificity, extradiol cleavage activity with 4-methylcatechol and low $K_m$ values for halocatechols, suggesting that this enzyme is distinct from other known catechol and chlorocatechol 1,2-dioxygenases.
Keywords
Catechol 1,2-dioxygenase; Rhodococcus; methylcatechol;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, J.-H., T.-K. Kim, Y.-M. Kim, W.-C. Kim, G.-J. Joo, K. Y. Lee, and I.-K. Rhee. 2005. Cloning and characterization of cyclohexanol dehydrogenase gene from Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 15: 1189-1196   과학기술학회마을
2 Maltseva, O. V., I. P. Solyanikova, and L. A. Golovleva. 1991. Catechol 1,2-dioxygenases of a chlorophenol-degrading strain of Rhodococcus erythropolis: Purification and properties. Biochemistry (Mosc) 56: 1548-1555
3 Mars, A. E., J. Kingma, S. R. Kaschabek, W. Reineke, and D. B. Janssen. 1999. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J. Bacteriol. 181: 1309-1318
4 Miller, D. J. 1979. Aromatic metabolism in nocardioform actinomycetes. PhD Thesis, University of Kent
5 Ngai, K. L. and L. N. Ornston. 1988. Abundant expression of Pseudomonas genes for chlorocatechol metabolism. J. Bacteriol. 170: 2412-2413   DOI
6 Powlowski, J. B., J. Ingebrand, and S. Dagley. 1985. Enzymology of the beta-ketoadipate pathway in Trichosporon cutaneum. J. Bacteriol. 163: 1136-1141
7 Solyanikova, I. P., O. V. Maltseva, and L. A. Golovleva. 1992. Purification and properties of catechol 1,2-dioxygenase II from Pseudomonas putida 87. Biochemistry (Mosc) 57: 1310-1316
8 Strachan, P. D., A. A. Freer, and C. A. Fewson. 1998. Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene. Biochem. J. 333: 741-747   DOI
9 Solyanikova, I., E. Golovlev, O. Lisnyak, and L. Golovleva. 1999. Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: Comparison with analogous enzymes of the ordinary and modified orthocleavage pathways. Biochemistry (Mosc) 64: 824-831
10 Maltseva, O. V., I. P. Solyanikova, and L. A. Golovleva. 1994. Chlorocatechol 1,2-dioxygenase from Rhodococcus erythropolis 1CP. Kinetic and immunochemical comparison with analogous enzymes from gram-negative strains. Eur. J. Biochem. 226: 1053-1061   DOI   ScienceOn
11 Nakai, C., K. Horiike, S. Kuramitsu, H. Kagamiyama, and M. Nozaki. 1990. Three isozymes of catechol 1,2-dioxygenase (pyrocatechase), alpha alpha, alpha beta, and beta beta, from Pseudomonas arvilla C-1. J. Biol. Chem. 265: 660-665
12 Klecka, G. M. and D. T. Gibson. 1981. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl. Environ. Microbiol. 41: 1159-1165
13 Jang, J. Y., D. Kim, H. W. Bae, K. Y. Choi, J. C. Chae, G. J. Zylstra, Y. M. Kim, and E. Kim. 2005. Isolation and characterization of a Rhodococcus species strain able to grow on ortho- and para-xylene. J. Microbiol. 43: 325-330   과학기술학회마을
14 Broderick, J. B. and T. V. O'Halloran. 1991. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry 30: 7349-7358   DOI
15 Bruce, N. C. and R. B. Cain. 1988. Beta-methylmuconolactone, a key intermediate in the dissimilation of methylaromatic compounds by a modified 3-oxoadipate pathway evolved in nocardioform actinomycetes. FEMS Microbiol. Lett. 50: 233-239
16 Park, D. W., K. Lee, J. C. Chae, K. Kudo, and C. K. Kim. 2004. Genetic structure of xyl gene cluster responsible for complete degradation of (4-chloro)benzoate from Pseudomonas sp. S-47. J. Microbiol. Biotechnol. 14: 483-489   과학기술학회마을
17 Ahn, T.-S., G.-H. Lee, and H.-G. Song. 2005. Biodegradation of phenanthrene by psychrotrophic bacteria from lake Baikal. J. Microbiol. Biotechnol. 15: 1135-1139   과학기술학회마을
18 Dorn, E. and H. J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem. J. 174: 73-84   DOI
19 Fujiwara, M., L. A. Golovleva, Y. Saeki, M. Nozaki, and O. Hayaishi. 1975. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. J. Biol. Chem. 250: 4848-4855
20 Hou, C. T., R. Patel, and M. O. Lillard. 1977. Extradiol cleavage of 3-methylcatechol by catechol 1,2-dioxygenase from various microorganisms. Appl. Environ. Microbiol. 33: 725-727
21 Moiseeva, O. V., I. P. Solyanikova, S. R. Kaschabek, J. Groning, M. Thiel, L. A. Golovleva, and M. Schlomann. 2002. A New modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: Genetic and biochemical evidence. J. Bacteriol. 184: 5282-5292   DOI
22 An, H. R., H. H. Park, and E. S. Kim. 2001. Cloning and expression of thermophilic catechol 1,2-dioxygenase gene (catA) from Streptomyces setonii. FEMS Microbiol. Lett. 195: 17-22   DOI
23 Cha, C. J., R. B. Cain, and N. C. Bruce. 1998. The modified beta-ketoadipate pathway in Rhodococcus rhodochrous N75: Enzymology of 3-methylmuconolactone metabolism. J. Bacteriol. 180: 6668-6673
24 Murakami, S., N. Kodama, R. Shinke, and K. Aoki. 1997. Classification of catechol 1,2-dioxygenase family: sequence analysis of a gene for the catechol 1,2-dioxygenase showing high specificity for methylcatechols from   DOI   ScienceOn
25 Murakami, S., C. L. Wang, A. Naito, R. Shinke, and K. Aoki. 1998. Purification and characterization of four catechol 1,2-dioxygenase isozymes from the benzamide-assimilating bacterium Arthrobacter species BA-5-17. Microbiol. Res. 153: 163-171   DOI
26 Cha, C. J. and N. C. Bruce. 2003. Stereo- and regiospecific cis,cis-muconate cycloisomerization by Rhodococcus rhodochrous N75. FEMS Microbiol. Lett. 224: 29-34   DOI   ScienceOn
27 Larkin, M. J., L. A. Kulakov, and C. C. Allen. 2005. Biodegradation and Rhodococcus-masters of catabolic versatility. Curr. Opin. Biotechnol. 16: 282-290   DOI   ScienceOn
28 Dorn, E. and H. J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J. 174: 85-94   DOI
29 Kim, J. S., J. H. Kim, E. K. Ryu, J. K. Kim, C. K. Kim, I. G. Hwang, and K. Lee. 2004. Versatile catabolic properties of Tn4371-encoded bph pathway in Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643. J. Microbiol. Biotechnol. 14: 302-311
30 Matsumura, E., S. Ooi, S. Murakami, S. Takenaka, and K. Aoki. 2004. Constitutive synthesis, purification, and characterization of catechol 1,2-dioxygenase from the aniline-assimilating bacterium Rhodococcus sp. AN-22. J. Biosci. Bioeng. 98: 71-76   DOI