Browse > Article
http://dx.doi.org/10.5658/WOOD.2013.41.6.583

The analysis of products from base-catalyzed depolymerization of kraft lignin  

Kim, Seok Ju (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute)
Kim, Yong Sik (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute)
Publication Information
Journal of the Korean Wood Science and Technology / v.41, no.6, 2013 , pp. 583-593 More about this Journal
Abstract
The based-catalyzed depolymerization (BCD) of kraft lignin isolated from black liquor which the chemical pulping of a mixture of various Southeast Asia hardwood chips was carried out in a batch reactor in the presence of different NaOH concentrations with supercritical methanol. The S:G ratio of the kraft lignin determined by pyrolysis-GC/MS analysis turned out roughly 1.4:1 and main products were vanillic acid, syringol and 3-methoxy catechol. The diethyl ether extracts as phenolic monomers from BCD reaction were produced similar yield among different NaOH concentrations. The 21 compounds were identified by GC/MS analysis in all experiments and major products were catechol, 3-methoxycatechol, 4-methylcatechol, syringol and isovanillic acid. However, it had been shown to be different monomer contents depending on the dosage of NaOH. Catechol, 4-methylcatechol and 3-methoxycatechol were shown to be the dominant monomer from BCD reaction using 7.5 and 3.25% of NaOH concentration whereas syringol, isovanillic acid, 3-methoxycatechol and 4-methylcatechol were determined to be the most typical products under the condition of 1.63% NaOH.
Keywords
kraft lignin; based-catalyzed depolymerization (BCD); pyrolysis; GC/MS analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Silva, E. A. B., M. Zabkova, J. D. Araujo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues. 2009. An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem. Eng. Res. Des. 87(9): 1276-1292.   DOI   ScienceOn
2 Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13): 1781-1788.   DOI   ScienceOn
3 Kleinert, M. and T. Barth. 2008. Phenols from lignin. Chem. Eng. Technol. 31(5): 736-745.   DOI   ScienceOn
4 Kalda, J. F., S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, 2002, Lignin-based carbon fiber for composite fiber applications. Carbon 40: 2913-2920.   DOI   ScienceOn
5 Fengel, D., and G. Wegener. 1989. Wood:chemistry, ultrastructure, reactions. Walter de Gruyter. pp. 132-135.
6 Pandey, M. P., and C. S. Kim. 2011. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34(1): 29-41.   DOI   ScienceOn
7 Vigneault, A., D. K. Johnson, and E. Chornet. 2007. Base-catalyzed depolymerization of lignin: separation of monomers. Can. J. Chem. Eng. 85: 906-916.
8 TAPPI method T 222 om-02. 2004. Acid-insoluble lignin in wood and pulp. TAPPI Press, Atlanta, USA.
9 Roberts, V. M., V. Stein, T. Reiner, A. Lemonidou, X. Li, and J. A. Lercher. 2011. Towards quantitative catalytic lignin depolymerization. Chem. Eur. J. 17: 5939-5948.   DOI   ScienceOn
10 Shabtai, J. S., W. W. Zmierczak, and E. Chornet. 1999. "Process for conversion of lignin to reformulated hydrocarbon". U.S. Patent 5959167.
11 Shabtai, J. S., W. W. Zmierczak, and E. Chornet. 2001. "Process for conversion of lignin to reformulated, partially oxygenated gasoline". U.S. patent 6172272.
12 Harman-Ware, A. E., M. Crocker, A. P. Kaur, M. S. Meier, D. Kato, and B. Lynn. 2013. Pyrolysis-GC/MS of sinapyl and coniferyl alcohol. J. Anal. appl. Pyrolysis. 99: 161-169.   DOI   ScienceOn
13 del Rio, J. C., A. Gutierrez, J. Romero, M. J. Martinez, and A. T. Martinez. 2001. Identification of residual lignin markers in eucalypt kraft pulps by PY-GC/MS. J. Anal. appl, Pyrolysis. 58-59: 425-439.   DOI   ScienceOn
14 Miller, J. E., L. R. Evans, J. E. Mudd, and K. A. Brown. 2002. "Batch microreactor studies of lignin depolymerization by bases. 2. Aqueous solvents". report, Sandia National Laboratories, Albuquerque. NM.
15 Ida Brodin. 2009. Chemical properties and thermal behavior of kraft lignins, Licentiate Thesis. KTH Chemical science and engineering. p. 30.
16 Zakzeski, J., P. C. A. Bruijinincx, A. L. Jogerius, and B. M. Weckhuysen. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews 110: 3552-3559.   DOI   ScienceOn
17 Miller, J. E., L. Evans, A. Littlewolf, and D. E. Trudell. 1999. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel 78: 1363-1366.   DOI   ScienceOn
18 Leffingwell, J. C., E. D. Alford, and D. Leffingwell. 2013. Aroma constituents of a supercritical $CO_2$ extract of Kentucky Dark Fire-Cured Tobacco. Leffingwell Reports 5(1): 1-21.   DOI   ScienceOn
19 Faix, O., D. Meier, and I. Fortman. 1990. Thermal degradation products of wood: Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz als Roh-und Werkstoff 48: 281-285.
20 Lima, C. F., L. C. A. barbosa, C. R. Marcelo, F. O. Silverio, and J. L. Colodette. 2008. Comparison between analytical pyrolysis and nitrobenzene oxidation for determination of syringyl/guaiacyl ratio in Eucalyptus spp. Lignin. BioResources 3(3): 701-712.