Browse > Article
http://dx.doi.org/10.5657/kfas.2007.40.5.282

Characterization of Chloroanilines-degrading Bacteria Isolated from Seaside Sediment  

Kang, Min-Seung (Department of Food Science & Technology, Pukyong National University)
Kim, Young-Mog (Department of Food Science & Technology, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.40, no.5, 2007 , pp. 282-287 More about this Journal
Abstract
Chloroanilines are aromatic amines used as intermediate products in the synthesis of herbicides, azo-dyes, and pharmaceuticals. 3,4-dichloroaniline (DCA) is the degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as an active agent in the cosmetic industry. The compound, however, is considered a potential pollutant due to its toxicity and recalcitrant property to humans and other species. With the increasing necessity for bioremediation, we sought to isolate bacteria that degraded 3,4-DCA. A bacterium capable of growth on 3,4-DCA as the sole carbon source was isolated from seaside sediment using a dilution method with a culture enriched in 3,4-DCA. The isolated strain, YM-7 was identified to be Pseudomonas sp. The isolated strain was also able to degrade other chloroaniline compounds. The isolated strain showed a high level of catechol 2,3-dioxygenase activity on exposure to 3,4-DCA, suggesting that this enzyme is an important factor in 3,4-DCA degradation. The activity toward 4-methylcatechol was 53.1% that of catechol, while the activity toward 3-methylcatechol, 4-chlorocatechol and 4,5-chlorocatechol was 18.1, 33.1, and 6.9%, respectively.
Keywords
Bioremediation; Chloroanilines; 3,4-Dichloroaniline; Seaside sediment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aoki, K., K. Konohana, R. Shinke and H. Nishira. 1984. Purification and characterization of catechol 1,2dioxygenase from aniline-assimilating Rhodococcus erythropolis AN-13. Agric. BioI. Chem., 48, 2087-2095   DOI
2 Hofer, B., S. Backhaus and K.N. Timmis. 1994. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB4000 encodes four additional metabolic enzymes. Gene, 144, 9-16   DOI   ScienceOn
3 Na, K., S. Kim, M. Kubo and S. Chung. 2001. Cloning and phylogenetic analysis of two diferent bphC genes and bphD gene from PCB-degrading bacterium, Pseudomonas sp. strain SY5. J. Microbiol. Biotechnol., 11, 668-676   과학기술학회마을
4 Gheewala, S.H. and A.P. Annachhatre. 1997. Biodegradation of aniline. Water Sci. Technol., 36, 53-63
5 Lee, J.S., E.J. Kang, M.O. Kim, D.H. Lee, K.S. Bae and C.K. Kim. 2001. Identification of Yarrowia lipolytica Y 103 and its degradability of phenol and 4-chlorophenol. J. Microbiol. Biotechnol., 11, 112-117
6 Dunbar, J., L.O. Ticknor and C.R. Kuske. 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66, 2943-2950   DOI
7 Liu, Z., H. Yang, Z. Huang, P. Zhou and S.J. Liu. 2002. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl. Microbiol. Biotechnol., 58, 679-682   DOI   ScienceOn
8 Choi, J.H., T.K. Kim, Y.M. Kim, W.C. Kim, G.J. Joo, K.Y. Lee, and I.K. Rhee. 2005. Cloning and cgaracterization of a short chain alcohol dehydrogenase gene for cyclohexanol oxidation in Rhodococcus sp. TK6. J. Microbiol. Biotechnol., 15, 1186-1196
9 Berns, K.I. and C.A. Thomas. 1965. Isolation of the high molecular DNA from Haemophilus influenzae. J. Mol. BioI., 11, 476-490   DOI
10 Park, D.W., J.H. Lee, D.H. Lee, K. Lee and C.K. Kim. 2003. Sequence characteristics of xyl JQK genes reponsible for catechol degradation in benzoatecatabolizing Pseudomonas sp. S-47. J. Microbiol. Biotechnol., 13, 700-705
11 Kearny, P.C. and D.D. Kaufman. 1975. In: Herbicides: Chemistry, Degradation and Mode of Action, Marcel Dekker, New York
12 Radianingtyas, H., G.K. Robinson and A.T. Bull. 2003. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology, 149, 3279-328   DOI
13 Kim, Y.M., K. Park, GJ. Joo, E.M. Jeong, J.E. Kim and I.K. Rhee. 2004. Glutathione-dependent biotransformation of the fungicide chlorothalonil. J. Agric. Food Chem., 52, 4192-4196   DOI   ScienceOn
14 Tixier, C., M. Sancelme, S. Ait-Aissa, F. Bonnemoy, A. Cuer, N. Truffaut and H. Veschambre. 2002. Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere, 46, 519-526   DOI   ScienceOn
15 Harayama, S. and M. Rekik. 1990. The mata clevage operon of TOL degradative plasmid pWWO comprised 13 gene. Mol. Gen. Genet., 221, 113-120   DOI
16 Motonaga, K., K. Tagagi and S. Matumoto. 1996. Biodegradation of chlorothalonil in soil after suppression of degradation. BioI. Fertil. Soils., 23, 340-345   DOI
17 Travkin, V.M., I.P. Solyanikova, I.M. Rietjens, J. Vervoort, W.J. Berkel and L.A. Golovleva. 2003. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J. Environ. Sci. Health, 38, 121-132   DOI   ScienceOn
18 Nakanishi, Y., S. Murakami, R. Shinke and K. Aoki. 1991. Induction, purification, and characterization of catechol 2,3-dioxygenase from aniline-assimilating Pseudomonas sp. FK-8-2. Agric. BioI. Chem., 55, 1281-1289   DOI