• 제목/요약/키워드: 4-Aminopyridine

Search Result 66, Processing Time 0.028 seconds

The Effect of ${\alpha}_2$-Adrenergic Antagonists on Blood Chemical Values in Xylazine-sedated Dog (${\alpha}_2$-Adrenergic Antagonists가 Xylazine 진정견의 혈액화학치에 미치는 영향)

  • Choi Seok-Hwa;Chang Kyung-Jin
    • Journal of Veterinary Clinics
    • /
    • v.7 no.2
    • /
    • pp.501-509
    • /
    • 1990
  • This study was designed to examine effects of $\alpha$$_2$-Adrenergic Antagonists on blood chemical values in xylazine-sedated dogs. Twenty-four crossbred dogs of both sexes were intramusculary injected with a standard dosage of xylazine(2.2mg/kg of body weight). Righting reflex was uniformly lost and considered to be the point of maximum sedation. When the dogs were maximally sedated, tested groups were in-travenously injected with yohimbine 0.125mg/kg, 4-aminopyridine(4-AP) 0.3mg/kg, and a combination of yohimbine with 4-AP. Control group was intravenously 1 $m\ell$ of physiological saline solution. Total protein(T.P), albumin, glucose, aspartate aminotransferase(AST), alanine aminotrnasferase(ALT), blood urea nitrogen(BUN) were analyzed in the conditions of 0-, 30-, 60- and 120-minute after the administration of drugs. The results obtained in the study were as follows. 1. Changes of T.P, albumin, AST, ALT and BUN values in the control group were not significant during or after xylazine administration for at least 120minutes. 2. No changes of T.P, albumin, AST, ALT and BUN values in the tested groups were observed during or after $\alpha$$_2$-Adrenergic Antagonists treatment. 3. Serum glucose values of control group were getting remarkably increased after xylazine injection. 4. The xylasine-induced hyperglycemia was reversed in the dogs administrated with $\alpha$$_2$-Adrenergic Antagonists. Therefore, the results of the study show that the combined treatment with antagonists may be useful for accidental overdoses of xylazine and rapid reversal of animals sedated with xylazine.

  • PDF

Eupafolin Suppresses P/Q-Type Ca2+ Channels to Inhibit Ca2+/Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals

  • Chang, Anna;Hung, Chi-Feng;Hsieh, Pei-Wen;Ko, Horng-Huey;Wang, Su-Jane
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.630-636
    • /
    • 2021
  • Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.

Prejunctional Modulation of Non-adrenergic Non-cholinergic Relaxation of the Rabbit Proximal Stomach by Potassium Channels (토끼 위 근위부의 비-아드레날린 비-콜린성 이완반응의 포타슘 체널에 의한 접합전 조절작용)

  • Hong, Eun-Ju;Park, Mi-Sun;Park, Sang-Il;Kim, Myung-Woo;Choi, Su-Kyung;Hong, Sung-Cheul
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.399-406
    • /
    • 1997
  • The effects of different $K^+$ channel blockers were investigated on the non-adrenergic non-cholinergic (NANC) relaxations in the circular muscle of the rabbit proximal stomach. Non-selective blockers of $K^+$ channels, 4-aminopyridine (4-AP, 3~30${\mu}M$) and tetraethylammonium (TEA, 100~1000${\mu}M$) significantly enhanced the NANC relaxations in a concentration-dependent manner. The enhancement was more prominent for the NANC relaxations induced by the electric field stimulation (EFS) with lower frequencies. Blockers of large conductance $Ca^{2+}$-activated $K^+$ channels, charybdotoxin and iberiotoxin, a blocker of small conduntance $Ca^{2+}$-activated $K^+$ channels, apamin and a blocker of ATP-sensitive $K^+$ channels, glibenclamide had no effect on the NANC relaxations, respectively. Exogeneous administration of nitric oxide (NO, 1~30${\mu}M$) caused concentration-dependent relaxations which showed a similarity to those obtained with EFS. None of the $K^+$ channel blockers had an effect on the concentration-dependent relaxation in response to NO. These results suggest that prejunctional $K^+$ channels regulate the release of NO from the NANC nerve in the rabbit proximal stomach as the inhibition of prejunctional $K^+$ channels increases the NANC relaxation induced by the EFS.

  • PDF

Testosterone Relaxes Rabbit Seminal Vesicle by Calcium Channel Inhibition

  • Kim, Jong-Kok;Han, Woo-Ha;Lee, Moo-Yeol;Myung, Soon-Chul;Kim, Sae-Chul;Kim, Min-Ky
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.73-77
    • /
    • 2008
  • Recent studies have documented that testosterone relaxes several smooth muscles by modulating $K^+$ channel activities. Smooth muscles of seminal vesicles playa fundamental role in ejaculation, which might involve testosterone. This study was aimed to assess the role of testosterone in seminal vesicular motility by studying its effects on contractile agents and on the ion channels of single vesicular myocytes in a rabbit model. The contractile responses of circular smooth muscle strips of rabbit seminal vesicles to norepinephrine ($10{\mu}M$), a high concentration of KCI (70 mM), and testosterone ($10{\mu}M$) were observed. Single vesicular myocytes of rabbit were isolated using proteolytic enzymes including collagenase and papain. Inside-out, attached, and whole-cell configurations were examined using the patch clamp technique. The applications of $10{\mu}M$ norepinephrine or 70 mM KCl induced tonic contractions, and $10{\mu}M$ testosterone (pharmacological concentration) evoked dose-dependent relaxations of these precontracted strips. Various $K^+$ channel blockers, such as tetraethylammonium (TEA; $10{\mu}M$), iberiotoxin ($0.1{\mu}M$), 4-aminopyridine (4-AP, $10{\mu}M$), or glibenclamide ($10{\mu}M$) rarely affected these relaxations. Single channel data (of inside-out and attached configurations) of BK channel activity were also hardly affected by testosterone ($10{\mu}M$). On the other hand, however, testosterone reduced L-type $Ca^{2+}$ currents significantly, and found to induce acute relaxation of seminal vesicular smooth muscle and this was mediated, at least in part, by $Ca^{2+}$ current inhibition in rabbit.

Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

  • Wijerathne, Tharaka Darshana;Kim, Jihyun;Yang, Dongki;Lee, Kyu Pil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.241-249
    • /
    • 2017
  • Plasma membrane hyperpolarization associated with activation of $Ca^{2+}$-activated $K^+$ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary ${\gamma}^2$-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific $K^+$ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical $BK_{Ca}$ activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting ${\gamma}^2$ subunit, hLRRC52. As previously reported, Slo3 $K^+$ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 $K^+$ current, and internal alkalinization and $Ca^{2+}$ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 $K^+$ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular $Ca^{2+}$. In contrast, elevation of intracellular $Ca^{2+}$ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate $Ca^{2+}$-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.

Disappearance of Hypoxic Pulmonary Vasoconstriction and $O_2$-Sensitive Nonselective Cationic Current in Arterial Myocytes of Rats Under Ambient Hypoxia

  • Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.463-468
    • /
    • 2013
  • Acute hypoxia induces contraction of pulmonary artery (PA) to protect ventilation/perfusion mismatch in lungs. As for the cellular mechanism of hypoxic pulmonary vasoconstriction (HPV), hypoxic inhibition of voltage-gated $K^+$ channel (Kv) in PA smooth muscle cell (PASMC) has been suggested. In addition, our recent study showed that thromboxane $A_2$ ($TXA_2$) and hypoxia-activated nonselective cation channel ($I_{NSC}$) is also essential for HPV. However, it is not well understood whether HPV is maintained in the animals exposed to ambient hypoxia for two days (2d-H). Specifically, the associated electrophysiological changes in PASMCs have not been studied. Here we investigate the effects of 2d-H on HPV in isolated ventilated/perfused lungs (V/P lungs) from rats. HPV was almost abolished without structural remodeling of PA in 2d-H rats, and the lost HPV was not recovered by Kv inhibitor, 4-aminopyridine. Patch clamp study showed that the hypoxic inhibition of Kv current in PASMC was similar between 2d-H and control. In contrast, hypoxia and $TXA_2$-activated $I_{NSC}$ was not observed in PASMCs of 2d-H. From above results, it is suggested that the decreased $I_{NSC}$ might be the primary functional cause of HPV disappearance in the relatively early period (2 d) of hypoxia.

[$Cl^-$-sensitive Component of $Ca^{2+}$-activated Tail Current in Rabbit Atrial Myocytes

  • Park, Choon-Ok;So, In-Suk;Ho, Won-Kyung;Kim, Woo-Gyeum;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 1992
  • We used the whole cell patch clamp technique to examine the ionic basis for the tail current after depolarizing pulse in single atrial myocytes of the rabbit. We recorded the tail currents during various repolarizations after short depolarizing pulse from a holding potential of -70 mV. The potassium currents were blocked by external 4-aminopyridine and replacement of internal potassium with cesium. The current was reversed to the outward direction above +10 mV. High concentrations of intracellular calcium buffer inhibited the activation of the current. Diltiazem and ryanodine blocked it too. These data suggest that the current is activated by intracellular calcium released from sarcoplasmic reticulumn. When the internal chloride concentration was increased, the inward tail current was increased. The current was partially blocked by the anion transport blocker niflumic acid. The current voltage curve of the niflumic acid sensitive current component shows outward rectification and is well fitted to the current voltage curve of the theoretically predicted chloride current calculated from the constant field equation. The currents recorded in rabbit atrial myocytes, with the method showing isolated outward Na Ca exchange current in ventricular cells of the guinea pig, suggested that chloride conductance could be activated with the activation of Na/ca exchange current. From the above results it is concluded that a chloride sensitive component which is activated by intracellular calcium contributes to tail currents in rabbit atrial cells.

  • PDF

Arachidonic Acid Ingibits Norepinephrine Release through Blocking of Voltage-sensitive $Ca^{2+}$ Channels in PC12 Cells

  • Choi, Se-Young;Park, Tae-Ju;Choi, Jun-Ho;Kim, Kyong-Tai
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.81-86
    • /
    • 1997
  • We studied the mechanism of arachidonic acid on the secretion of a neurotransmitter in rat pheochromocytoma PC12 cells. Arachidonic acid inhibited the 70 mM $K^+$-induced secretion of norepinephrine. Arachidonic acid also inhibited the 70 mM $K^+$-induced $Ca^{2+}$ mobilization which is due to the opening of the voltage-sensitive $Ca^{2+}$ channels (VSCC). Both the half maximal inhibitory concentration ($IC_{50}$) of the norepinephrine secretion and VSCC coincided at 30 uM. The major oxidized metabolites of arachidonic acid, prostaglandins did not mimic the inhibitory effect of arachidonic acid. Nordihydroguaiaretic acid (NDGA) and indomethacin which are inhibitors of lipoxygenase and cyclooxygenase, respectively, did not block the inhibitory effect of arachidonic acid. The results suggest that arachidonic acid serves as a signal itself, not in the form of metabolites. The pretreatment of various $K^+$ channel blockers such as 4-aminopyridine, tetraethylarnmonium, glipizide, or glibenclamide also did not show any effect on the inhibitory effect of arachidonic acid. Through these results we suggest that arachidonic acid regulates VSCC directly and affects the secretion of neurotransmitters.

  • PDF

Imipramine Inhibits A-type Delayed Rectifier and ATP-Sensitive $K^{+}$ Currents Independent of G-Protein and Protein Kinase C in Murine Proximal Colonic Myocytes

  • Choi, Seok;Parajuli, Shankar Prasad;Lim, Geon-Han;Kim, Jin-Ho;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Jun, Jae-Yeoul
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.998-1005
    • /
    • 2006
  • The effects of imipramine on A-type delayed rectifier $K^{+}$ currents and ATP-sensitive $K^{+}\;(K_{ATP)$ currents were studied in isolated murine proximal colonic myocytes using the whole-cell patch-clamp technique. Depolarizing test pulses between-80 mV and +30 mV with 10 mV increments from the holding potential of-80 mV activated voltage-dependent outward $K^{+}$ currents that peaked within 50 ms followed by slow decreasing sustained currents. Early peak currents were inhibited by the application of 4-aminopyridine, whereas sustained currents were inhibited by the application of TEA. The peak amplitude of A-type delayed rectifier $K^{+}$ currents was reduced by external application of imipramine. The half-inactivation potential and the half-recovery time of A-type delayed rectifier $K^{+}$ currents were not changed by imipramine. With 0.1 mM ATP and 140 mM $K^{+}$ in the pipette and 90 mM $K^{+}$ in the bath solution and a holding potential of -80 mV, pinacidil activated inward currents; this effect was blocked by glibenclamide. Imipramine also inhibited $K_{ATP}$ currents. The inhibitory effects of imipramine in A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents were not changed by guanosine 5-O-(2-thiodiphosphate) ($GDP{\beta}S$) and chelerythrine, a protein kinase C inhibitor. These results suggest that imipramine inhibits A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents in a manner independent of G-protein and protein kinase C.

Effects of the Changes in Ca-current and Intracellular Ca-concentration on the Contraction and Action Potential Staircase (수축과 활동전압의 Staircase 현상에 대한 Ca-전류 및 세포내 $Ca^{2+}$ 농도 변화의 영향)

  • Park, Choon-Ok;So, In-Suk;Ho, Won-Kyung;Earm, Yung-E;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.301-312
    • /
    • 1989
  • It well known that the magnitude of contraction and the shape of action potential depend upon the stimulation frequency and the duration of resting period (positive and negative staircase). Although the underlying mechanism of the staircase phenomenon is not fully understood, it has been suggested that staircase could be related to the intracllular $Ca^{2+}$ concentration. In order to elucidate the role of intracellular $Ca^{2+}$ on the contraction and action potential staircases, we examined the effects of 1 mM 4-aminopyridine (4-AP), 0.5 uM verapamil, 1 uM ryanodine, or reduction of extracellular Na concentration to 30% $(substituted\;by\;equimolar\;Li^+)$ in small atrial strips of the rabbit $(3{\times}10\;mm)$. The results obitained were as follows; 1) When the stimulation frequency was increased from 0.1 Hz to 2 Hz, positive staircase of the contraction and elevation of plateau level in action potential were found in control and the conditions of Na reduction and treatments of 4-AP, verapamil and ryanodine. 2) When stimulation frequency returned to 0.1 Hz from 1 min rest just after 2 Hz stimulation fer 1 min, the magnitudes of initial few contractions were larger than that of steady state contraction (post-rest potentiation) except, ryanodine or Na-reduction groups. 3) Negative staircase of contraction was developed in control and 4-AP group at post-rest 0.1 Hz stimulation and the plateau level of the action potential was decreased at the same time. But the reduction of contraction or the plateau level was much smaller in 4-AP group and than in control. From the above results it can be concluded that contraction and action potential staircase is dependent upon transmembrane $Ca^{2+}-current\;and\;Ca^{2+}$release from the SR.

  • PDF