• Title/Summary/Keyword: 3d and 4d transition metal

Search Result 50, Processing Time 0.028 seconds

Applications of metal-semiconductor phase transition in 2D layered transition metal dichalcogenides (2차원 층상구조 전이금속칼코젠의 반도체-도체 구조상전이 기반 응용 기술)

  • Cho, Suyeon;Kim, Sera;Seok, Jinbong;Yang, Heejun
    • Vacuum Magazine
    • /
    • v.3 no.1
    • /
    • pp.4-8
    • /
    • 2016
  • Motivated by two dimensional graphene, layered transition metal dichalcogenides (TMDs) have attracted scientific interests by their diverse electronic, optical and catalytic properties. In particular, group 6 TMDs such as $MoS_2$ and $MoTe_2$ have polymorphs (with metallic octahedral and semiconducting hexagonal phases) which are not present in graphene. Here, we introduce a new concept in 2D materials' studies, structural phase transition, with group 6 TMDs and its current research trend and applications for electric device and electrochemical catalyst.

Adsorption and Separation of Ag(I) Using a Merrifield Resin Bound NTOE, NDOE in Aqueous Solution (수용액에서 NTOE, NDOE가 결합된 Merrifield 수지를 이용한 Ag(I)의 흡착 및 분리 특성)

  • Lee, Cheal-Gyu;Kim, Hae Joong
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • The adsorption and separation behaviors of transition metal ions using a merrifield resin bound 1,12-diaza-3,4:9,10-dibenzo-5,8-dioxacyclopentadecane (NTOE) and 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane(NDOE) were investigated in aqueous solution. The orders of adsorption degree(E) and distribution ratio(D) of transition metal ions were Cu(II)$t_R$) of metal ions were affected by adsorption degree(E) and distribution ratio(D). This results showed good separation efficiency of Ag(I) from mixed metal solution.

  • PDF

Electronic Structure and Magnetism of (3d, 4d)-Pd Alloyed c(2×2) Monolayers (3d 및 4d 전이금속과 Pd가 c(2×2) 합금을 이룬 단층의 자성에 대한 제일원리 연구)

  • Kim, Dong-Chul;Choi, Chang-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2010
  • We investigated the electronic structure and magnetism of the (3d, 4d)-Pd alloyed c($2{\times}2$) monolayer systems, by use of the FLAPW band method. For comparison, pure 3d- and 4d-transition metal monolayers are also considered. We found that the antiferromagnetic configuration of pure V monolayers is sustained in the V-Pd alloy system, while the Ti-Pd alloy system is changed to antiferromagnetic configuration from the ferromagnetic state in pure Ti monolayer. The 4d TM (Mo, Ru, Rh)-Pd monolayers are found to be stable in ferromagnetic configurations. The magnetic moments of Ru and Rh atoms in Ru-Pd and Rh-Pd systems are almost same with those of pure Ru and Rh monolayers, while the magnetic moment of Mo atom is increased to $2.98\;{\mu}_B$ in Mo-Pd alloyed system from the value of Mo monolayer, $0.02\;{\mu}_B$.

Characteristics of Ni/3d Series Transition Metal/γ-Al2O3 Catalysts and their Hydrogen Production Abilities from Butane Steam Reforming

  • Lee, Jun-Su;Choi, Byung-Hyun;Ji, Mi-Jung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3281-3289
    • /
    • 2011
  • The materials composed of the 3d series transition metals are introduced into the hydrocarbon steam-reforming reaction in order to enhance the $H_2$ production and abruptly depress the catalytic deactivation resulting from the strong sintering between the Ni component and the ${\gamma}-Al_2O_3$ support. The conventional impregnation method is used to synthesize the Ni/3d series metal/${\gamma}-Al_2O_3$ materials through the sequentially loading Ni source and the 3d series metal (Ti, V, Cr, Mn, Fe, Co, Cu, and Zn) sources onto the ${\gamma}-Al_2O_3$ support. The Mnloaded material exhibits a significantly higher reforming reactivity than the conventional Ni/${\gamma}-Al_2O_3$ and the other Ni/3d series metal/${\gamma}-Al_2O_3$ materials. Particularly the addition of Mn selectively improves the $H_2$ product selectivity by eliminating the formation of $CH_4$ and CO. The $H_2$ production is maximized at a value of 95% over Ni(0.3)/Mn(0.3)/${\gamma}-Al_2O_4$(1.0) with a butane conversion of 100% above $750^{\circ}C$ for up to 55 h.

A Series of Transition-metal Coordination Complexes Assembled from 3-Nitrophthalic Acid and Thiabendazole: Synthesis, Structure and Properties

  • Xu, Wen-Jia;Xue, Qi-Jun;Liang, Peng;Zhang, Ling-Yu;Huang, Yan-Feng;Feng, Yu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.218-224
    • /
    • 2014
  • In order to explore new coordination frameworks with novel designed 3-nitrophthalic acid and the same N-donor ancillary ligand, a series of novel coordination complexes, namely, $[Cd_2(3-NPA)_2(TBZ)_2(H_2O)_2]{\cdot}2H_2O$(1), $[Zn_2(3-NPA)_2(TBZ)_2]$(2), $[Zn_2O(3-NPA)(TBZ)(H_2O)]_n$(3), $[Co(3-NPA)(TBZ)(H_2O)]_n$(4) (3-$NPAH_2$ = 3-nitrophthalic acid), have been hydrothermally synthesized through the reaction of 3-nitrophthalic acid with divalent transition-metal salts in the presence of N-donor ancillary coligand (TBZ = thiabendazole). As a result of various coordination modes of the versatile 3-$NPAH_2$ and the coligand TBZ, these complexes exhibit structural diversity. X-ray structure analysis reveals that 1 and 2 are 0D molecular rings, while 3 and 4 are one-dimensional (1D) infinite chain polymers. And the weak O-H${\cdots}$O hydrogen bonds and C-H${\cdots}$O nonclassical hydrogen bonds as well as ${\pi}-{\pi}$ stacking also play important roles in affecting the final structure where complexes 1, 3 and 4 have 3D supramolecular architectures, while complex 2 has a 2D supramolecular network. Also, IR spectra, fluorescence properties and thermal decomposition process of complexes 1-4 were investigated.

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3

  • Pang, Subeen
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.187-202
    • /
    • 2017
  • The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.

Theoretical Study of the Conformation of Cis Carbene-Olefin Transition Matal Complexes (시스 카벤-올레핀 전이금속 착물들의 형태에 대한 이론적 연구)

  • Seong-Kyu Park;Ill-Doo Kim;Joon-Tae Kim;Chang-Jin Choi;Young-Gu Cheun
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.802-811
    • /
    • 1992
  • The conformations of several carbene-olefin-transition metal complexes[$(CO)_4M$-(CHX)olefin] (X: $OCH_3,\;NHCH_3,\;SCH_3$, M: C, Mo, W) have been studied by means of Extend Huckel calculations. In the case of $d^6$ transition metal octahedral complexes, it is shown that the two main factors which determine the optimal conformation are metal-to-ligand back-donation and direct ligand-ligand interaction at the metal, but the ligand-ligand interaction dominates the situation for a metal that is coordinated to $\pi$ acceptor ligands and to $\pi$ donor group on the carbene. The relative amounts of both factors depend strongly on the electronic nature of the ligands at the metal. The greater electron donating ability of nitrogen stabilizes amino-substituted carbene complexes compared with their alkoxyl substituted analogues. This interaction is optimal when the $\pi$ systems of the carbene and olefin are coplanar. The introduction of the $\pi$ donor group on the carbene carbon increases also the importance of the ligand-ligand interaction.

  • PDF