Browse > Article
http://dx.doi.org/10.9729/AM.2017.47.3.187

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3  

Pang, Subeen (Department of Materials Science and Engineering, College of Engineering, Seoul National University)
Publication Information
Applied Microscopy / v.47, no.3, 2017 , pp. 187-202 More about this Journal
Abstract
The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.
Keywords
$SrRuO_3$; 4d orbital; Electronic correlation; Metal-Insulator transition; Transmission electron microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bern F, Ziese M, Setzer A, Pippel E, Hesse D, and Vrejoiu I (2013) Structural, magnetic and electrical properties of $SrRuO_3$ films and $SrRuO_3$/$SrTiO_3$ superlattices. J. Phys.: Condens. Matter 25, 49.
2 Chang S H, Chang Y J, Jang S Y, Jeong D W, Jung C U, Kim Y J, Chung J S, and Noh T W (2011) Thickness-dependent structural phase transition of strained $SrRuO_3$ ultrathin films: the role of octahedral tilt. Phys. Rev. B 84, 10.
3 Chang Y J, Kim C H, Phark S H, Kim Y S, Yu J, and Noh T W (2009) Fundamental thickness limit of itinerant ferromagnetic $SrRuO_3$ thin films. Phys. Rev. Lett. 103, 5.
4 Chen H, Millis A J, and Marianetti C A (2013) Engineering correlation effects via artificially designed oxide superlattices. Phys. Rev. Lett. 111, 11.
5 Liebsch A (2003b) Surface versus bulk Coulomb correlations in photoemission spectra of $SrVO_3$ and $CaVO_3$. Phys. Rev. Lett. 90, 9.
6 Liebsch A, Ishida H, and Bihlmayer G (2005) Coulomb correlations and orbital polarization in the Metal-Insulator transition of $VO_2$. Phys. Rev. B 71, 8.
7 Lin P A, Jeng H T, and Hsue C S (2008) Electronic structure and orbital ordering of $SrRu_{1−x}Ti_xO_3$: GGA+U investigations. Phys. Rev. B 77, 8.
8 Liu Z Q, Ming Y, Lü W M, Huang Z, Wang X, Zhang B M, Feng Y P, Venkatesan T, and Ariando (2012) Tailoring the electronic properties of $SrRuO_3$ films in $SrRuO_3$/$LaAlO_3$ superlattices. Appl. Phys. Lett. 101, 22.
9 Lu W, Song W D, He K, Chai J, Sun C J, Chow G M, and Chen J S (2013a) The role of octahedral tilting in the structural phase transition and magnetic anisotropy in $SrRuO_3$ thin film. J. Appl. Phys. 113, 6.
10 Lu W, Yang P, Song W D, Chow G M, and Chen J S (2013b) Control of oxygen octahedral rotations and physical properties in $SrRuO_3$ films. Phys. Rev. B 88, 21.
11 Mahadevan P, Aryasetiawan F, Janotti A, and Sasaki T (2009) Evolution of the electronic structure of a ferromagnetic metal: case of $SrRuO_3$. Phys. Rev. B 80, 3.
12 Maiti K and Singh R S (2005) Evidence against strong correlation in 4d transition-metal oxides Ca$RuO_3$ and $SrRuO_3$. Phys. Rev. B 71, 16.
13 Maiti K, Singh R S, and Medicherla V R R (2007a) Evolution of a band insulating phase from a correlated metallic phase. Phys. Rev. B 76, 16.
14 Siemons W, Koster G, Vailionis A, Yamamoto H, Blank D H, and Beasley M R (2007) Dependence of the electronic structure of $SrRuO_3$ and its degree of correlation on cation off-stoichiometry. Phys. Rev. B 76, 7.
15 Shai D E, Adamo C, Shen D W, Brooks C M, Harter J W, Monkman E J, Burganov B, Schlom D G, and Shen K M (2013) Quasiparticle mass enhancement and temperature dependence of the electronic structure of ferromagnetic $SrRuO_3$ thin films. Phys. Rev. Lett. 110, 8.
16 Shen X, Qiu X, Su D, Zhou S, Li A, and Wu D (2015) Thickness-dependent Metal-Insulator transition in epitaxial $SrRuO_3$ ultrathin films. J. Appl. Phys. 117, 1.
17 Si L, Zhong Z, Tomczak J M, and Held K (2015) Route to roomtemperature ferromagnetic ultrathin $SrRuO_3$ films. Phys. Rev. B 92, 4.
18 Takizawa M, Toyota D, Wadati H, Chikamatsu A, Kumigashira H, Fujimori A, Oshima M, Fang Z, Lippmaa M, Kawasaki M, and Koinuma H (2005) Manifestation of correlation effects in the photoemission spectra of $Ca_{1−x}$ Srx $RuO_3$. Phys. Rev. B 72, 6.
19 Tompkins H, and Irene E A (2005) Handbook of ellipsometry (William Andrew).
20 Tian W, Haeni J H, Schlom D G, Hutchinson E, Sheu B L, Rosario M M, Schiffer P, Liu Y, Zurbuchen M A, and Pan X Q (2007) Epitaxial growth and magnetic properties of the first five members of the layered $Sr_{n+1}$ $Ru_nO_{3n+1}$ oxide series. Appl. Phys. Lett. 90, 2.
21 Toyota D, Ohkubo I, Kumigashira H, Oshima M, Ohnishi T, Lippmaa M, Kawasaki M, and Koinuma H (2006) Ferromagnetism stabilization of ultrathin $SrRuO_3$ films: thickness-dependent physical properties. J. Appl. Phys. 99, 8.
22 Wang G T, Zhang M P, Yang Z X, and Fang Z (2009) Orbital orderings and optical conductivity of $SrRuO_3$ and Ca$RuO_3$: first-principles studies. J. Phys.: Condens. Matter 21, 26.
23 Toyota D, Ohkubo I, Kumigashira H, Oshima M, Ohnishi T, Lippmaa M, Takizawa M, Fujimori A, Ono K, Kawasaki M, and Koinuma H (2005) Thickness-dependent electronic structure of ultrathin $SrRuO_3$ films studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 87, 16.
24 Vailionis A, Siemons W, and Koster G (2008) Room temperature epitaxial stabilization of a tetragonal phase in A$RuO_3$ (A=Ca and Sr) thin films. Appl. Phys. Lett. 93, 5.
25 Verissimo-Alves M, Garcia-Fernandez P, Bilc D I, Ghosez P, and Junquera J (2012) Highly confined spin-polarized two-dimensional electron gas in $SrTiO_3$/$SrRuO_3$ superlattices. Phys. Rev. Lett. 108, 10.
26 Yang H F, Fan C C, Liu Z T, Yao Q, Li M Y, Liu J S, Jiang M H, and Shen D W (2016) Comparative angle-resolved photoemission spectroscopy study of Ca$RuO_3$ and $SrRuO_3$ thin films: pronounced spectral weight transfer and possible precursor of lower Hubbard band. Phys. Rev. B 94, 11.
27 Williams A J, Gillies A, Attfield J P, Heymann G, Huppertz H, Martinez-Lope M J, and Alonso J A (2006) Charge transfer and antiferromagnetic insulator phase in $SrRu_{1−x}Cr_xO_3$ perovskites: solid solutions between two itinerant electron oxides. Phys. Rev. B 73, 10.
28 Woodward P M (1997) Octahedral tilting in perovskites. II. structure stabilizing forces. Acta Crystallogr. Sect. B: Struct. Sci. 53, 44-66.   DOI
29 Xia J, Siemons W, Koster G, Beasley M R, and Kapitulnik A (2009) Critical thickness for itinerant ferromagnetism in ultrathin films of $SrRuO_3$. Phys. Rev. B 79, 14.
30 Yoo H K, Chang Y J, Moreschini L, Kim H D, Sohn C H, Sinn S, Oh J S, Kuo C T, Bostwick A, Rotenberg E, and Noh T W (2015) Insulating-layer formation of metallic LaNiO3 on Nb-doped $SrTiO_3$ substrate. Appl. Phys. Lett. 106, 12.
31 Yoshimatsu K, Okabe T, Kumigashira H, Okamoto S, Aizaki S, Fujimori A, and Oshima M (2010) Dimensional-crossover-driven Metal-Insulator transition in $SrVO_3$ ultrathin films. Phys. Rev. Lett. 104, 14.
32 Yoshimatsu K, Horiba K, Kumigashira H, Yoshida T, Fujimori A, and Oshima M (2011). Metallic quantum well states in artificial structures of strongly correlated oxide. Science 333, 319-322.   DOI
33 Zhong Z, Wallerberger M, Tomczak J M, Taranto C, Parragh N, Toschi A, Sangiovanni G, and Held K (2015) Electronics with correlated oxides: $SrVO_3$ /$SrTiO_3$ as a Mott transistor. Phys. Rev. Lett. 114, 24.
34 Zhong Z, Zhang Q, and Held K (2013) Quantum confinement in perovskite oxide heterostructures: tight binding instead of a nearly free electron picture. Phys. Rev. B 88, 12.
35 Dang H T, Mravlje J, Georges A, and Millis A J (2015) Electronic correlations, magnetism, and Hund's rule coupling in the ruthenium perovskites $SrRuO_3$ and Ca$RuO_3$. Phys. Rev. B 91, 19.
36 Yang H F, Liu Z T, Fan C C, Yao Q, Xiang P, Zhang K L, Li M Y, Li H, Liu J S, Shen D W, and Jiang M H (2016) Origin of the kink in the band dispersion of the ferromagnetic perovskite $SrRuO_3$: electron-phonon coupling. Phys. Rev. B 93, 12.
37 Ahn J S, Bak J, Choi H S, Noh T W, Han J E, Bang Y, Cho J H, and Jia Q X (1999) Spectral Evolution in (Ca, Sr)$RuO_3$ near the Mott-Hubbard Transition. Phys. Rev. Lett. 82, 5321-5324.   DOI
38 Autieri C (2016) Antiferromagnetic and xy ferro-orbital order in insulating $SrRuO_3$ thin films with SrO termination. J. Phys.: Condens. Matter 28, 42.
39 Choi K J, Baek S H, Jang H W, Belenky L J, Lyubchenko M, and Eom C B (2010) Phase-transition temperatures of strained single-crystal $SrRuO_3$ thin films. Adv. Mater. 22, 759-762.   DOI
40 Cox P A, Egdell R G, Goodenough J B, Hamnett A, and Naish C C (1983) The metal-to-semiconductor transition in ternary ruthenium (IV) oxides: a study by electron spectroscopy. J. Phys. C: Solid State Phys. 16, 6221-6239.   DOI
41 de Boer J H and Verwey E J (1937) Semi-conductors with partially and with completely filled 3d-lattice bands. Proc. Phys. Soc. 49, 59-71.   DOI
42 de'Medici L, Hassan S R, Capone M, and Dai X (2009) Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 12.
43 Ferrero M, Becca F, Fabrizio M, and Capone M (2005) Dynamical behavior across the Mott transition of two bands with different bandwidths. Phys. Rev. B 72, 20.
44 Dodge J S, Weber C P, Corson J, Orenstein J, Schlesinger Z, Reiner J W, and Beasley M R (2000) Low-frequency crossover of the fractional power-law conductivity in $SrRuO_3$. Phys. Rev. Lett. 85, 4932-4935.   DOI
45 Egerton R F (2011) Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, New York).
46 Etz C, Maznichenko I V, Bottcher D, Henk J, Yaresko A N, Hergert W, Mazin I I, Mertig I, and Ernst A (2012) Indications of weak electronic correlations in $SrRuO_3$ from first-principles calculations. Phys. Rev. B 86, 6.
47 Hohenester U, Ditlbacher H, and Krenn J R (2009) Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103, 10.
48 Gupta K, Mandal B, and Mahadevan P (2014) Strain-induced Metal-Insulator transition in ultrathin films of $SrRuO_3$. Phys. Rev. B 90, 12.
49 Han Q, Dang H T, and Millis A J (2016) Ferromagnetism and correlation strength in cubic barium ruthenate in comparison to strontium and calcium ruthenate: a dynamical mean-field study. Phys. Rev. B 93, 15.
50 He J, Borisevich A, Kalinin S V, Pennycook S J, and Pantelides S T (2010) Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 22.
51 Imada M, Fujimori A, and Tokura Y (1998) Metal-Insulator transitions. Rev. Mod. Phys. 70, 1039-1263.   DOI
52 Ishigami K, Yoshimatsu K, Toyota D, Takizawa M, Yoshida T, Shibata G, Harano T, Takahashi Y, Kadono T, Verma V K, Singh V R, Takeda Y, Okane T, Saitoh Y, Yamagami H, Koide T, Oshima M, Kumigashira H, and Fujimori A (2015) Thickness-dependent magnetic properties and strain-induced orbital magnetic moment in $SrRuO_3$ thin films. Phys. Rev. B 92, 6.
53 Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K, Nelson C T, Zhang Y, Su D, Folkman C M, Baek S H, Lee S, Janicka K, Zhu Y, Pan X Q, Fong D D, Tsymbal E Y, Rzchowski M S, and Eom C B (2011) Metallic and insulating oxide interfaces controlled by electronic correlations. Science 331, 886-889.   DOI
54 Gu M, Laverock J, Chen B, Smith K E, Wolf S A, and Lu J (2013) Metal-Insulator transition induced in $CaVO_3$ thin films. J. Appl. Phys. 113, 13.
55 Jeng H T, Lin S H, and Hsue C S (2006) Orbital ordering and Jahn-Teller distortion in perovskite ruthenate $SrRuO_3$. Phys. Rev. Lett. 97, 6.
56 Fujioka K, Okamoto J, Mizokawa T, Fujimori A, Hase I, Abbate M, Lin H J, Chen C T, Takeda Y, and Takano M (1997) Electronic structure of $SrRuO_3$. Phys. Rev. B 56, 6380-6383.   DOI
57 Georges A, de'Medici L, and Mravlje J (2013) Strong correlations from Hund's coupling. Annu. Rev. Condens. Matter Phys. 4, 137-178.   DOI
58 Gorelov E, Karolak M, Wehling T O, Lechermann F, Lichtenstein A I, and Pavarini E (2010) Nature of the Mott transition in $Ca_2RuO_4$. Phys. Rev. Lett. 104, 22.
59 Grutter A, Wong F, Arenholz E, Liberati M, Vailionis A, and Suzuki Y (2010) Enhanced magnetism in epitaxial $SrRuO_3$ thin films. Appl. Phys. Lett. 96, 8.
60 Gu M, Wang K, Wang Y, Xie Q, Cai H, Zhang G P, and Wu X (2016) Enhancement of orbital ordering and spin polarization by controlling the dimensionality of the octahedra network. NPJ Quant. Mater. 1, 16011.   DOI
61 Kennedy B J and Hunter B A (1998) High-temperature phases of $SrRuO_3$. Phys. Rev. B 58, 653-658.   DOI
62 Gu M, Xie Q, Shen X, Xie R, Wang J, Tang G, Wu D, Zhang G P, and Wu X S (2012) Magnetic ordering and structural phase transitions in a strained ultrathin $SrRuO_3$/$SrTiO_3$ superlattice. Phys. Rev. Lett. 109, 15.
63 Gunnarsson O, Koch E, and Martin R M (1996) Mott transition in degenerate Hubbard models: application to doped fullerenes. Phys. Rev. B 54, R11026-R11029.   DOI
64 Jeong D W, Choi H C, Kim C H, Chang S H, Sohn C H, Park H J, Kang T D, Cho D Y, Baek S H, Eom C B, Shim J H, Yu J, Kim K W, Moon S J, and Noh T W (2013) Temperature evolution of itinerant ferromagnetism in $SrRuO_3$ probed by optical spectroscopy. Phys. Rev. Lett. 110, 24.
65 Kacedon D B, Rao R A, and Eom C B (1997) Magnetoresistance of epitaxial thin films of ferromagnetic metallic oxide $SrRuO_3$ with different domain structures. Appl. Phys. Lett. 71, 1724-1726.   DOI
66 Kanbayasi A (1976) Magnetic properties of $SrRuO_3$ single crystal. J. Phys. Soc. Jpn. 41, 1876-1878.   DOI
67 Kostic P, Okada Y, Collins N C, Schlesinger Z, Reiner J W, Klein L, Kapitulnik A, Geballe T H, and Beasley M R (1998) Non-Fermi-liquid behavior of $SrRuO_3$: evidence from infrared conductivity. Phys. Rev. Lett. 81, 2498-2501.   DOI
68 Kim B and Min B I (2014) Termination-dependent electronic and magnetic properties of ultrathin $SrRuO_3$ (111) films on $SrTiO_3$. Phys. Rev. B 89, 19.
69 Kim H D, Noh H J, Kim K H, and Oh S J (2004) Core-level X-ray photoemission satellites in ruthenates: A new mechanism revealing the Mott transition. Phys. Rev. Lett. 93, 12.
70 Kim J, Chung J, and Oh S J (2005a) In situ photoemission study on $SrRuO_3$ / $SrTiO_3$ films grown by pulsed laser deposition. Phys. Rev. B 71, 12.
71 Koga A, Kawakami N, Rice T M, and Sigrist M (2004) Orbital-selective Mott transitions in the degenerate Hubbard model. Phys. Rev. Lett. 92, 21.
72 Kim K W, Lee J S, Noh T W, Lee S R, and Char K (2005b) Metal-Insulator transition in a disordered and correlated $SrTi_{1-x}Ru_xO_3$ system: changes in transport properties, optical spectra, and electronic structure. Phys. Rev. B 71, 12.
73 Kim M and Min B I (2015) Nature of itinerant ferromagnetism of $SrRuO_3$: A DFT+DMFT study. Phys. Rev. B 91, 20.
74 Kimber S A J, Rodgers J A, Wu H, Murray C A, Argyriou D N, Fitch A N, Khomskii D I, and Attfield J P (2009) Metal-Insulator transition and orbital order in Pb$RuO_3$. Phys. Rev. Lett. 102, 4.
75 Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A, and Beasley M R (2012) Structure, physical properties, and applications of $SrRuO_3$ thin films. Rev. Mod. Phys. 84, 253-298.   DOI
76 Kotliar G and Vollhardt D (2004) Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57, 53-60.
77 Kumigashira H, Minohara M, Takizawa M, Fujimori A, Toyota D, Ohkubo I, Oshima M, Lippmaa M, and Kawasaki M (2008) Interfacial electronic structure of $SrTiO_3$$SrRuO_3$ heterojuctions studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 92, 12.
78 Lee J S, Lee Y S, Noh T W, Char K, Park J, Oh S J, Park J H, Eom C B, Takeda T, and Kanno R (2001) Optical investigation of the electronic structures of $Y_2Ru_2O_7$, Ca$RuO_3$, $SrRuO_3$, and $Bi_2Ru_2O_7$. Phys. Rev. B 64, 24.
79 Liebsch A (2003a) Quasi-particle spectra of perovskites: enhanced Coulomb correlations at surfaces. Eur. Phys. J. B 32, 477-487.   DOI
80 Maiti K, Singh R S, and Medicherla V R R (2007b) Observation of particle hole asymmetry and phonon excitations in non-Fermi-liquid systems: a high-resolution photoemission study of ruthenates. Europhys. Lett. 78, 1.
81 Poteryaev A I, Ferrero M, Georges A, and Parcollet O (2008) Effect of crystal-field splitting and interband hybridization on the Metal-Insulator transitions of strongly correlated systems. Phys. Rev. B 78, 4.
82 Mott N (1990) On Metal-Insulator transitions. J. Solid State Chem. 88, 5-7.   DOI
83 Okamoto J, Mizokawa T, Fujimori A, Hase I, Nohara M, Takagi H, Takeda Y, and Takano M (1999) Correlation effects in the electronic structure of $SrRuO_3$. Phys. Rev. B 60, 2281-2285.   DOI
84 Park J, Oh S J, Park J H, Kim D M, and Eom C B (2004) Electronic structure of epitaxial (Sr, Ca)$RuO_3$ films studied by photoemission and X-ray absorption spectroscopy. Phys. Rev. B 69, 8.
85 Poteryaev A I, Tomczak J M, Biermann S, Georges A, Lichtenstein A I, Rubtsov A N, Saha-Dasgupta T, and Andersen O K (2007) Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in $V_2O_3$. Phys. Rev. B 76, 8.
86 Rondinelli J M, Caffrey N M, Sanvito S, and Spaldin N A (2008) Electronic properties of bulk and thin film $SrRuO_3$: search for the Metal- Insulator transition. Phys. Rev. B 78, 15.
87 Mazin I I and Singh D J (1997) Electronic structure and magnetism in Rubased perovskites. Phys. Rev. B 56, 2556-2571.   DOI
88 Rozenberg M J, Kotliar G, and Kajueter H (1996) Transfer of spectral weight in spectroscopies of correlated electron systems. Phys. Rev. B 54, 8452-8468.   DOI
89 Ryee S, Jang S W, Kino H, Kotani T, and Han M J (2016) Quasiparticle self-consistent GW calculation of $Sr_2RuO_4$ and $SrRuO_3$. Phys. Rev. B 93, 7.