• Title/Summary/Keyword: 3T3-L1 preadipocyte

Search Result 102, Processing Time 0.034 seconds

Inhibitory Effect of Ethyl Acetate Extract of White Peach Pericarp on Adipogenesis of 3T3-L1 Preadipocyte Cells

  • Park, Hong-Gyu;Kim, Jin-Moon;Kim, Jung-Mogg;Chung, Won-Yoon;Yoo, Yun-Jung;Cha, Jeong-Heon
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1327-1331
    • /
    • 2008
  • In order to determine whether peach contains compounds to regulate adipocyte differentiation, extracts of flesh/pericarp of yellow/white peach were prepared in water, ethyl acetate (EtOAc), or n-butanol solvent and determined for effects on adipocyte differentiation in C3H10T1/2 or 3T3-L1 cells. Interestingly, none of peach extracts has statistically significant stimulatory effect on the adipocyte differentiation in C3H10T1/2. Furthermore, the presence of EtOAc extract of white peach pericarp (WPP) was found to inhibit lipid accumulation in 3T3-L1 cells both by microscopic examination of Oil Red O-stained lipid droplets and by spectrophotometric quantification of extracted stain, indicating a significant inhibitory effect on adipocyte differentiation. The inhibition of lipid accumulation was accompanied by a significant decrease in the expression levels of adipocyte molecular markers-peroxisome proliferator-activated receptor $\gamma$, CAAT enhancer binding protein $\alpha$, and fatty acid-binding protein. Thus, this study determined that WPP EtOAc extract contains the inhibitory compound(s) on adipogenesis.

Effects of (6)-gingerol, ginger component on adipocyte development and differentiation in 3T3-L1 (생강 성분인 (6)-Gingerol이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향)

  • Seo, Eun Young
    • Journal of Nutrition and Health
    • /
    • v.48 no.4
    • /
    • pp.327-334
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the effects of (6)-gingerol, ginger components proliferation and adipocyte differentiation from early to lately steps. Methods: 3T3-L1 preadipocytes were cultured. Differentiation of confluent cells was induced with dexamethasone, isobutylxanthin and insulin for 2 day and cells were cultured by medium with insulin in presence of various concentrations 0, 25, 50, $100({\mu}mol/L)$ of (6)-gingerol for 4 day. Cell viability was measured using the EZ Cytox assay kit. In addition, we examined the expression of mRNA levels associated with each adipocyte differentiation step by real time reverse transcription polymerase chain reaction. Results: (6)-Gingerol inhibited adipocyte proliferation in a dose and time dependent manner. Expression of $C/EBP{\beta}$, associated with early differentiation step remained unchaged. However, intermmediate, late differentiation step and adipocytokines were effectively changed in dose-dependently manner in cell groups treated with (6)-gingerol. Conclusion: This study has shown that treatment with (6)-gingerol inhibited adipocyte proliferation as well as each adipocyte differentiation step. In particular, the (6)-gingerol more effectively inhibited adipocyte differentiation from intermmediate differentiation step.

A Study on the Inhibitory Effects of Scutellariae Radix on Fat Accumulation (황금(黃芩, Scutellariae Radix)의 지방축적억제 효능연구)

  • Kim, Kyeong-Seon;Cha, Min-Ho;Lee, Soo-Won;Yoon, Yoo-Sik
    • Korean Journal of Oriental Medicine
    • /
    • v.9 no.2
    • /
    • pp.45-54
    • /
    • 2003
  • Obesity is caused by unbalance of energy intake and expenditure, which results in extra accumulation of adipose tissue. Obesity is directly related to metabolic diseases such as diabetes, hyperlipidemia, fatty liver and so on. To investigate the anti-obesity effects of Scutellariae Radix, 70% EtOH extract and water extract of it were tested by in vitro and in vivo studies of fat accumulation. 3T3-L1 preadipocyte cell line was used in a in vitro study of fat accumulation. After 3T3-L1 cells were induced to differentiate into adipocytes, S. radix extract were added and fat accumulation was measured by oil red O staining. In vivo study showed that weight and epididymal/ retro-peritoneal adipose tissues were significantly reduced in mice fed Scutellariae Radix extract compared with control group. Especially, mice fed Scutellariae Radix extract showed reduced serum triglyceride and glucose levels. When adipose tissues were analyzed by microscope, mean adipocyte size was significantly reduced in Scutellariae Radix extract-fed mice. Therefore, this study showed inhibitory effects of Scutellariae Radix on in vitro and in vivo fat accumulation.

  • PDF

Antioxidative Activities and Inhibitory Effects on Lipid Accumulation of Extracts from Different Parts of Morus alba and Cudrania tricuspidata (뽕나무(Morus alba)와 꾸지뽕나무(Cudrania tricuspidata)의 부위에 따른 항산화 활성 및 3T3-L1세포 지방축적 억제 효과)

  • Kim, Gun-Hee;Kim, Eunhyang
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.138-147
    • /
    • 2019
  • In this study, we examined antioxidative effects and the anti-adipogenesis effect of different parts of Cudrania tricuspidata (C), and Morus alba (M). Total polyphenol contents were highest in M-root ($34.56{\pm}0.045mg\;GAE/g$), and there was no significant difference, between C-root and M-leaf. Total flavonoid contents of C-root were highest ($23.07{\pm}0.004mg\;QE/g$). To examine antioxidant activities of C and M extracts, DPPH and ABTS radical scavenging activity, and FRAP assay, was used. Results show that antioxidant activities of C and M extracts increased, in a dose-dependent manner. Adipocytes are generated by preadipocyte differentiation, during adipogenesis. Matured adipocytes accumulate in abnormal and cause obesity. We investigated effects of leaf and root extracts of C and M, on lipid accumulation, in 3T3-L1 adipocytes. Changes in cell morphology, and degrees of lipid accumulation in adipocytes, were evaluated by Oil Red O staining. Root extracts of C and M, reduced lipid content in a dose-dependent manner. Therefore, root extracts of C and M, may be good candidates for managing obesity.

Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes

  • Kim, Woo Kyoung;Kang, Nam E;Kim, Myung Hwan;Ha, Ae Wha
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.160-165
    • /
    • 2013
  • 3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and $40{\mu}g/mL$ of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP ${\beta}$ and C/EBP ${\alpha}$ were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBP${\beta}$ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from $20{\mu}g/mL$. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes.

Effect of Dictyopteris divaricata Extracts on Adipogenesis in 3T3-L1 Preadipocytes (미끈뼈대그물말(Dictyopteris divaricata) 추출물의 항비만 효과)

  • Chul Hwan Kim;Seok-Chun Ko;Hyun-Soo Kim;Gun-Woo Oh;Ji-Yul Kim;Kyung Woo Kim;Jeong Min Lee;Myeong-Seok Lee;Yun Gyeong Park;Gyeong Lee;Jae-Young Je;Jung Hye Won;Young Jun Kim;Dae-Sung Lee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2023
  • Dictyopteris divaricata, a type of marine brown algae, has been studied for its various biological properties, including anti-inflammatory, antidiabetic, and whitening effects. However, its potential antiobesity effects have not been extensively explored. This study aimed to examine the impact of D. divaricata ethanol extract (DDE) on adipocyte differentiation and adipogenesis using 3T3-L1 preadipocytes. Our results showed that when 3T3-L1 preadipocytes were treated with noncytotoxic concentrations of DDE there was a concentration-dependent decrease in fat accumulation rate and triglycerid production compared with the control. Furthermore, DDE significantly reduced the expression of transcription factors (PPARγ, C/EBPα, and SREBP-1) and fatty acid transport protein (FABP4), which are crucial for 3T3-L1 preadipocyte differentiation. These findings suggest that DDE may exhibit antiobesity effects by suppressing the expression of lipogenic transcription factors and fatty acid transport proteins. Therefore, DDE holds potential as a therapeutic agent for obesity.

The Effects of Ginseng Saponin-Re, Re and Green Tea Catechine; ECGC (Epigallocatechin Gallate) on Leptin, Hormone Sensitive Lipase and Resistin mRNA Expressions in 3T3-L1 Adipocytes (3T3-L1 Adipocyte에 인삼 사포닌과 EGCG (Epigallocatechin Gallate)처리가 Leptin, Hormone Sensitive Lipase, Resistin mRNA- 발현에 미치는 영향)

  • Kim, Sung-Ok;LeeH, Eun-Joo;Choe, Won-Kyung
    • Journal of Nutrition and Health
    • /
    • v.39 no.8
    • /
    • pp.748-755
    • /
    • 2006
  • The purpose of this study was to find out effects of treatment of ginsenoside Re, Rc and EGCG on mRNA expressions of leptin, hormone sensitive lipase (HSL) and resistin in 3T3-L1 adipocytes. The concentrations of EGCG were treated with $0.01{\times}10^{-7},\;0.1{\times}10^{-7},\;1{\times}10^{-7}\;and\;1{\times}10^{-6}\;or\;100{\mu}g/ml$ ginsenoside Re, Rc in culture cell for 13 days. mRNA expression of leptin wasn't expressed in preadipocyte but according to differentiation of adipocyte, the that of mRNA expression was decreased at gensenosids or EGCG treated cells compared with non treated adipocyte. Expression of HSL mRNA was increased in G-Re, G-Rc and EGCG treated cells compared with non treated cells. The resistin level was significantly decreased in adipocytes treated with G-Re, G-Rc and EGCG. These pattern was similar to leptin expression. These results support that treatment of gensenosides or EGCG in 3T3-L1 adipocyte resulted to affect of leptin and resistin as well as HSL mRNA levels, accordingly, levels of leptin and HSL will be acted by signalling body fat stores to the hypothalamus which in turn regulates food intake andenergy expenditure to maintain body weight homeostasis. And also regulation of resistin mRNA will prevent to diabetics attacked with obesity. In conclusion, we suggest that consumption of ginseng saponine or EGCG might prevent human diabetics or/and obesity.

Effects for the New Formulation of Daesiho-tang on adipocyte development and differentiation in 3T3-L1 (대시호탕의 새로운 제형이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향)

  • Choi, Hye-Min;Kim, Se-Jin;Moon, Sung-Ok;Lee, Ji-Beom;Lee, Ha-young;Kim, Jong-Beom;Lee, Hwa-Dong
    • The Korea Journal of Herbology
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2018
  • Objectives : Daesiho-tang (DSHT) has been widely used in the treatment of cerebral infarct in traditional medicine. However, there was not report on the anti-obesity-related diseases efficacy of DSHT. In this study, we investigated the effects for the new formulation of DSHT, on the adipocyte differentiation cycle in 3T3-L1 cells. Methods : 3T3-L1 cells were treated with DSHT (50, 100, $200{\mu}g/m{\ell}$) during differentiation for 6 days. Also, the inhibitory effect of DSHT against 3T3-L1 adipogenesis was evaluated in various stage of adipogenesis such as early (0-2day), intermediate (2-4day), and terminal stage (4-6day). The accumulation of lipid droplets was determined by Oil Red O staining. and, the expressions of genes related to adipogenesis were measured by RT-PCR and Western blot analyses. Results : DSHT showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affect cell toxicity as assessed by measuring fat accumulation and adipogenesis. In addition, DSHT significantly reduced the expression levels of several adipocyte marker genes including proliferator activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) and CCAAT/ enhancer-binding $protein-{\alpha}$ ($C/EBP-{\alpha}$). Also, the anti-adipogenic effect of DSHT was strongly limited in the intermediate (2-4 day), terminal stage (4-6 day) of 3T3-L1 adipogenesis. In addition, the DSHT treatment down- regulated mRNA expression levels of $PPAR-{\gamma}$,, $C/EBP-{\alpha}$ in mature 3T3-L1 adipocytes. Conclusions : These results suggest that, the ability of DSHT has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. The new formulation of DSHT may be a promising medicine for the treatment of obesity and related metabolic disorders.

Comparative Study of Characterizing Components and Biological Activities of Bangpungtongseong-san Formulation (방풍통성산 제제의 성분 및 생리활성 비교 연구)

  • Kim, Jung Ok;Choi, Hye Min;Lee, Hee Hyun;Moon, Sung Ok;Kim, Jong Bum;Lee, Hwa Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.322-329
    • /
    • 2014
  • The purpose of this study was to investigate the quality of two different commercial Bangpungtongseong-san (BTS) extract granules (BTS-2 and BTS-3) by comparing with BTS decoction (BTS-1). The contents of characterizing components and biological activities of two different commercial BTS extract granules were compared with those of the BTS decoction. The contents of characterizing components were analyzed with HPLC. The antioxidative effects were determined by measuring 2,2-diphenyl-1-picrylhygrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activity. Also, we compared the effects on lipid accumulation and reactive oxygen species (ROS) production during differentiation of 3T3-L1 preadipocytes. The contents of five components except liquiritin and sennoside A were higher in BTS-1. The DPPH radical scavenging and SOD-like activity were higher in BTS-1. BTS-1 significantly inhibited lipid accumulation during differentiation of 3T3-L1 preadipocytes and showed stronger effects than BTS-2, BTS-3. In addition BTS-1 showed stronger inhibition effects on ROS production during differentiation of 3T3-L1 preadipocytes than BTS-2, BTS-3. These results indicate that BTS decoction has strong biological activities than commercial BTS extract granules. It is also consistent with the contents of characterizing components.

Anti-adipogenic Effects of Vibration with Varied Frequencies on 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에 대한 다양한 주파수 진동의 지방 생성 억제 효과)

  • Lee, Yeong Hun;Lee, Seok-Ho;Jung, Haebin;Jung, Yong Chan;Kim, Min Hwan;Lee, Eun Mi;Kim, Chi Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.18-24
    • /
    • 2021
  • Vibration is a mechanical cue that can be applied to adipose tissues for the purpose of treating obesity. However, the exact correlation between vibration and other anti-adipogenic pathways, such as development of cytoskeleton and apoptosis, remains unknown. The objective of this study was to investigate the unknown anti-adipogenic effects of vibration with varied frequencies on preadipocytes. 3T3-L1 preadipocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 5% calf serum at 37 ℃ with 5% CO2 in a humidified incubator. Vibration was generated using Arduino Uno microcontroller and vibration motor module with 1 V DC, and applied to preadipocytes for 3 days. Frequency conditions were set to 20, 55, and 90 Hz. Then, the expressions of p38 pathway, ROCK-1, α-actinin, Bax, Bcl-2, caspase-9, 8, and 3 were analyzed with western blot. As a result, p38 pathway was inhibited in 55 and 90 Hz while ROCK-1 and α-actinin were expressed in 20 Hz. Caspase-3, a terminal apoptotic factor, was activated in 20 Hz via extrinsic pathway rather than intrinsic pathway. Results suggest that various frequencies of vibration can inhibit adipogenesis via different pathways which sheds light on future mechanotransduction applications of vibration for the treatment of obesity.