• Title/Summary/Keyword: 3T3-L1 differentiation

Search Result 446, Processing Time 0.035 seconds

Perilla Leaf Extract Inhibits 3T3-L1 Preadipocytes Differentiation

  • Kim, Mi-Ja;Kim, Hye-Kyung
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.928-931
    • /
    • 2009
  • Effects of perilla leaf extracts (PLE) on adipocytes differentiation of 3T3-L1 cells were examined. Ethanol extract of PLE treatment significantly decreased lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Moreover, gene expression levels of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), the key adipogenic transcription factor, were markedly decreased by PLE. PLE also suppressed adipocyte fatty acid binding protein (aP2) and glycerol-3-phosphate dehydrogenase (GPDH), which are adipogenic marker proteins. These results suggest that PLE treatment suppressed differentiation of 3T3-L1 adipocytes, in part by down-regulating expression of adipogenic transcription factor and other specific target genes.

Inhibitory effects of Porphyra dentata extract on 3T3-L1 adipocyte differentiation

  • Choi, Su-Young;Lee, Su Yeon;Jang, Da hye;Lee, Suk Jun;Cho, Jeong-Yong;Kim, Sung-Hak
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.854-863
    • /
    • 2020
  • This study was aimed to investigate the inhibitory effects of Porphyra dentata (P. dentata) extract on the adipogenesis of 3T3-L1 cells and evaluate its anti-obesity effect. The proliferation of 3T3-L1 cells and differentiation of adipocytes under treatment of P. dentata extract was examined by measuring the cell viability using alamarBlue assay and lipid droplets by Oil Red O staining. Results showed that P. dentata extract has no cytotoxicity effect and lipid droplets formation decreased in a concentration-dependent manner in 3T3-L1 cells. It has been confirmed that transcription factors affecting lipid accumulation and anti-adipogenic effects during cell differentiation are linked to P. dentata extract. We observed that P. dentata shows lowering the mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα) that adipogenesis-associated key transcription factors and inhibiting adipogenesis in the early stages of differentiation. Treating the cells with P. dentata did not only suppressed PPARγ2 and C/EBPα but also significantly decreased the mRNA expression of adiponectin, Leptin, fatty acid synthase, adipocyte protein 2, and Acetyl-coA carboxylase 1. Overall, the P. dentata extract demonstrated inhibitory property in adipogenesis, which has a potential effect in anti-obesity in 3T3-L1 cells.

Homeostatic balance of histone acetylation and deconstruction of repressive chromatin marker H3K9me3 during adipocyte differentiation of 3T3-L1 cells

  • Na, Han?Heom;Kim, Keun?Cheol
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1301-1308
    • /
    • 2018
  • Background Adipocyte differentiation is completed by changing gene expression. Chromatin is closely related to gene expression. Therefore, its structure might be changed for adipocyte differentiation. Mouse 3T3-L1 preadipocytes have been used as a cell model to study molecular mechanisms of adipogenesis. Objective To examine changes of chromatin modification and expression of histone modifying enzymes during adipocyte differentiation. Methods Microscopic analysis and Oil Red O staining were performed to determine distinct phenotype of adipocyte differentiation. RT-PCR and Western blot analysis were used to examine expression levels of histone modifying enzymes during adipocyte differentiation. Histone modifications were examined by immunostaining analysis. Results Expression levels of P300 and cbp were increased during adipocyte differentiation. However, acetylation of histones was not quantitatively changed postdifferentiation of 3T3-L1 cells compared to that at pre-differentiation. RT-PCR and Western blot analyses showed that expression levels of hdac2 and hdac3 were increased during adipocyte differentiation, suggesting histone acetylation at chromatin level was homeostatically controlled by increased expression of both HATs and HDACs. Tri-methylation level of H3K9 (H3K9me3), but not that of H3K27me3, was significantly decreased during adipocyte differentiation. Decreased expression of setdb1 was consistent with reduced pattern of H3K9me3. Knock-down of setdb1 induced adipocyte differentiation. This suggests that setdb1 is a key chromatin modifier that modulates repressive chromatin. Conclusion These results suggest that there exist extensive mechanisms of chromatin modifications for homeostatic balance of chromatin acetylation and deconstruction of repressive chromatin during adipocyte differentiation.

The Effect of Conjugated Linoleic Acid Isomers on the Cell Proliferation, Apotosis and Expressions of Uncoupling Protein (Ucp) Genes during Differentiation of 3T3-L1 Preadipocytes (Conjugated Linoleic Acid 이성체가 3T3-L1 지방전구세포 분화중 세포증식, 세포사멸 및 Ucp 유전자 발현에 미치는 영향)

  • Kwon So-Young;Kang Keum-Jee
    • Journal of Nutrition and Health
    • /
    • v.37 no.7
    • /
    • pp.533-539
    • /
    • 2004
  • It has been reported that CLA decreases fat deposition in vivo and in vitro experiments. Among CLA isomers, c9t11 and t10c12 have been shown to exert active biological activities. For example, t10c12 reduces body weight and increases lean body mass, whereas, c9t11 has little effect on body fattness. However, the underlying molecular mechanism for the anti-obesity action of CLA isomers are not well understood. The purpose of this study was to examine the effects of t10c12 and c9t11 on lipid accumulation, cell proliferation, cell death and the expression levels of Ucp genes which are proposed as targets for anti-obesity in 3T3-L1 preadipocytes. Isomers of CLA at 50$\mu$M were added into preadipocyte differentiation medium for 3, 6 and 9days. Control cells received only the vehicle in the differentiation medium. Cytochemical analyses for lipid accumulation, cell proliferation and apotosis were carried out to compare lipidogenesis and cellular activity. RT-PCR analysis of GAPDH, Ucp 2,3 and 4 were also performed to find any modulatory effects of CLA isomers on the metabolic genes. Lipid accumulation indicated by Oil Red-O staining was inhibited in CLA isomers as compared to the control. T10c12 isomer showed less lipidogenesis than c9t11 did. A decrease occurred in CLA isomers as shown by BrdU incorporation. Apotosis has occured at higher level in t10c12 when compared to that of t9c11. Ucp 2, 3 and 4 genes were also upregulated in CLA isomers. T10c12 showed higher level of Ucp gene expressions than the c9t11 did. The biological activities of CLA isomers were also found to be different during differentiation of 3T3-L1 preadipocytes, suggesting that different isomers may be active in certain stage of lipidogenesis. The results indicate that both c9t11 and t10c12 CLA isomers decrease lipidogenesis, inhibit cell proliferation, increase cell death and upregulate in Ucp gene expressions during 3T3-L1 preadipocyte differentiation. T10c12 isomer was more effective than c9t11 in overall anti-obesity activity.

Roots Extract of Adenophora triphylla var. japonica Inhibits Adipogenesis in 3T3-L1 Cells through the Downregulation of IRS1

  • Kim, Hae Lim;Lee, Hae Jin;Choi, Bong-Keun;Park, Sung-Bum;Woo, Sung Min;Lee, Dong-Ryung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.136-141
    • /
    • 2020
  • The purpose of this study was to investigate the action mechanism of the roots of Adenophora triphylla var. japonica extract (ATE) in 3T3-L1 adipocytes. Cell toxicity test by MTT assay and lipid accumulation was performed to evaluate the inhibitory effect on the differentiation of adipocyte from preadipocytes induced by MDI differentiation medium, while adipogenesis related proteins expression level were evaluated by western blotting. As a result, ATE inhibited MDI-induced adipocyte differentiation in 3T3-L1 cells dose-dependently without cytotoxicity. Our results showed that ATE inhibited the phosphorylation of IRS1, thereby decreasing the expression of PI3K110α and reducing the phosphorylation of AKT and mTOR, resulting in attenuated protein expression of C/EBPα, PPARγ, ap2 and FAS in 3T3-L1 cells. These results suggest anti-adipogenic functions for ATE, and identified IRS1 as a novel target for ATE in adipogenesis.

Effects for the New Formulation of Daesiho-tang on adipocyte development and differentiation in 3T3-L1 (대시호탕의 새로운 제형이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향)

  • Choi, Hye-Min;Kim, Se-Jin;Moon, Sung-Ok;Lee, Ji-Beom;Lee, Ha-young;Kim, Jong-Beom;Lee, Hwa-Dong
    • The Korea Journal of Herbology
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2018
  • Objectives : Daesiho-tang (DSHT) has been widely used in the treatment of cerebral infarct in traditional medicine. However, there was not report on the anti-obesity-related diseases efficacy of DSHT. In this study, we investigated the effects for the new formulation of DSHT, on the adipocyte differentiation cycle in 3T3-L1 cells. Methods : 3T3-L1 cells were treated with DSHT (50, 100, $200{\mu}g/m{\ell}$) during differentiation for 6 days. Also, the inhibitory effect of DSHT against 3T3-L1 adipogenesis was evaluated in various stage of adipogenesis such as early (0-2day), intermediate (2-4day), and terminal stage (4-6day). The accumulation of lipid droplets was determined by Oil Red O staining. and, the expressions of genes related to adipogenesis were measured by RT-PCR and Western blot analyses. Results : DSHT showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affect cell toxicity as assessed by measuring fat accumulation and adipogenesis. In addition, DSHT significantly reduced the expression levels of several adipocyte marker genes including proliferator activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) and CCAAT/ enhancer-binding $protein-{\alpha}$ ($C/EBP-{\alpha}$). Also, the anti-adipogenic effect of DSHT was strongly limited in the intermediate (2-4 day), terminal stage (4-6 day) of 3T3-L1 adipogenesis. In addition, the DSHT treatment down- regulated mRNA expression levels of $PPAR-{\gamma}$,, $C/EBP-{\alpha}$ in mature 3T3-L1 adipocytes. Conclusions : These results suggest that, the ability of DSHT has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. The new formulation of DSHT may be a promising medicine for the treatment of obesity and related metabolic disorders.

Inhibitory Effect of Lactic Acid Bacteria-fermented Chrysanthemum indicum L. on Adipocyte Differentiation through Hedgehog Signaling (감국의 유산균 발효물이 hedgehog 신호를 통한 지방구세포 분화 억제효과)

  • Choi, Jae Young;Lim, Jong Seok;Sim, Bo Ram;Yang, Yung Hun
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.532-541
    • /
    • 2020
  • In this study, we describe the inhibition of adipocyte differentiation by the lactic acid bacteria (LAB) fermentation product of Chrysanthemum indicum L. (CI) extract to control obesity. Preparation of LAB-fermented products was performed to overcome the cytotoxicity of CI extract. During fermentation and 3T3-L1 cell line experiment, cytotoxicity was not induced in the CI fermentation products over 1 day in culture. Fermented materials from highly proliferative cultures were selected for treatment of 3T3-L1 cells and for comparison with unfermented control groups. Cell survival and undifferentiated cell populations were decreased differentiation population in all experimental groups compared with controls, as measured using fluorescence-activated cell sorting analysis. Akt pathway activity increased upon treatment with these fermented extracts in 3T3-L1 cells. Gli2 depleted at the protein level in association with adipocyte differentiation. LAB KCTC 3115- and 3109-fermented extract treatment caused controlled Gli2 protein accumulation. Moreover, KCTC 3115 and 3109 were found to reduce C/EBPα and FAS was depleted, whereas pACC was increased at the protein level upon treatment with the fermentation products of each of the four LAB used in this study. With Lactococcus lactis subsp. lactis KCTC 3115 fermentation, the regulation of adipose differentiation and hedgehog signaling were also suppressed, thereby inhibiting the differentiation of progenitor cells. The basis for the activation of hedgehog signaling may provide insights into the treatment of obesity and the inhibition of adipocyte differentiation.

Effects of Diglyceride-Conjugated Linoleic Acid on Proliferation and Differentiation of 3T3-L1 Cells

  • Jeong, Jae-Hwang;Lee, Sang-Hwa;Hue, Jin-Joo;Lee, Yea-Eun;Lee, Young-Ho;Hong, Soon-Ki;Jeong, Seong-Woon;Nam, Sang-Yoon;Yun, Young-Won;Lee, Beom-Jun
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • Conjugated linoleic acid (CLA) has been recently reported to have an anti-obesity effect in animals and humans. The objective of this study was to investigate effects of diglyceride (DG)-CLA on proliferation and differentiation of 3T3-L1 preadipocytes. Cell proliferation was determined using WST-8 analysis and cell differentiation was determined by glycerol-3-phosphate dehydrogenase (GPDH) activity. Lipid accumulation in differentiating 3T3-L1 cells was determined by Oil red O staining. There were four experimental groups including vehicle control (DMSO), CLA, triglyceride (TG)-CLA, and DG-CLA. Treatments of CLA, TG-CLA, and DG-CLA at the concentrations of $10{\sim}1000{\mu}g/ml$ reduced proliferation of preconfluent 3T3-L1 cells in a dose-dependent manner. Among them CLA was the most effective in the proliferation inhibition of preconfluent 3T3-L1 cells with increasing concentrations. Treatments of CLA and DG-CLA at the concentration of $100{\mu}g/ml$ significantly inhibited differentiation of postconfluent 3T3-L1 cells as measured by GPOH activity (p<0.05). In addition, treatments of CLA, TG-CLA, and DG-CLA effectively inhibited lipid accumulation during differentiation of 3T3-L 1 cells. OG-CLA had the most inhibitory effect on the differentiation and lipid accumulation. These results suggest that the compounds including CLA have a respectable anti-obesity effect and that consumption of DG-CLA as a dietary oil may give a benefit for controlling overweight in humans.

Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation

  • Zhang, Xian-Hua;Huang, Bo;Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 2012
  • Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethanol extracts on cell proliferation was detected by the MTS assay. The morphological changes and degree of adipogenesis of preadipocyte 3T3-L1 cells were measured by Oil Red-O staining assay. Treatment with extracts of resveratrol-amplified grape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extract treatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skin extracts may be useful for preventing obesity by regulating lipid metabolism.

Anti-adipogenic Activity of Acer tegmentosum and its Constituent, Catechin in 3T3-L1 Cells

  • Liu, Qing;Shin, Eun-Jin;Ahn, Mi-Jeong;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.212-215
    • /
    • 2011
  • In the course of screening anti-adipogenic activity of natural products employing the preadipocyte cell line, 3T3-L1 as an in vitro assay system, the EtOAc fraction of the stem barks of Acer tegmentosum Maxim (Aceraceae) showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of active constituent, (+)-catechin. (+)-Catechin showed inhibitory activity on adipocyte differentiation in dose-dependent manner. Further studies with interval treatment demonstrated that (+)-catechin exerted inhibitory activity on adipocyte differentiation via acting on early stage of adipogenesis. Our present study also showed that (+)-catechin significantly inhibited the preadipocyte proliferation. Taken together, these results suggest that (+)-catechin, a constituent of A. tegmentosum might contribute the anti-adipogenic activity of A. tegmentosum.