• Title/Summary/Keyword: 3T3-L1 adipogenesis

Search Result 278, Processing Time 0.028 seconds

Anti-Adipogenic Activity of Ailanthoidol on 3T3-L1 Adipocytes

  • Park, Ju-Hyung;Jun, Jong-Gab;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • Previous our study demonstrated that ailanthoidol (3-deformylated 2-arylbenzo[b]furan), a neolignan from Zanthoxylum ailanthoides or Salvia miltiorrhiza Bunge, is a novel anti-inflammatory agent. In this investigation, we examined the anti-adipogenic effect of ailanthoidol. Our data showed that ailanthoidol suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells. Treatment of the 3T3-L1 adipocytes with ailanthoidol resulted in an attenuation of the releases of leptin and interleukin-6. The expression of peroxisome proliferator-activated receptor $(PPAR){\gamma}$ and CCAAT/enhancer-binding protein $(C/EBP){\alpha}$, the central transcriptional regulators of adipogenesis, was decreased by treatment with ailanthoidol. Additionally, ailanthoidol treatment increased the phosphorylation levels of 5' adenosine monophosphate-activated protein kinase. These results suggest that ailanthoidol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$ expression. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of ailanthoidol.

Effect of Dictyopteris divaricata Extracts on Adipogenesis in 3T3-L1 Preadipocytes (미끈뼈대그물말(Dictyopteris divaricata) 추출물의 항비만 효과)

  • Chul Hwan Kim;Seok-Chun Ko;Hyun-Soo Kim;Gun-Woo Oh;Ji-Yul Kim;Kyung Woo Kim;Jeong Min Lee;Myeong-Seok Lee;Yun Gyeong Park;Gyeong Lee;Jae-Young Je;Jung Hye Won;Young Jun Kim;Dae-Sung Lee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2023
  • Dictyopteris divaricata, a type of marine brown algae, has been studied for its various biological properties, including anti-inflammatory, antidiabetic, and whitening effects. However, its potential antiobesity effects have not been extensively explored. This study aimed to examine the impact of D. divaricata ethanol extract (DDE) on adipocyte differentiation and adipogenesis using 3T3-L1 preadipocytes. Our results showed that when 3T3-L1 preadipocytes were treated with noncytotoxic concentrations of DDE there was a concentration-dependent decrease in fat accumulation rate and triglycerid production compared with the control. Furthermore, DDE significantly reduced the expression of transcription factors (PPARγ, C/EBPα, and SREBP-1) and fatty acid transport protein (FABP4), which are crucial for 3T3-L1 preadipocyte differentiation. These findings suggest that DDE may exhibit antiobesity effects by suppressing the expression of lipogenic transcription factors and fatty acid transport proteins. Therefore, DDE holds potential as a therapeutic agent for obesity.

Anti-adipogenic Activity of Acer tegmentosum and its Constituent, Catechin in 3T3-L1 Cells

  • Liu, Qing;Shin, Eun-Jin;Ahn, Mi-Jeong;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.212-215
    • /
    • 2011
  • In the course of screening anti-adipogenic activity of natural products employing the preadipocyte cell line, 3T3-L1 as an in vitro assay system, the EtOAc fraction of the stem barks of Acer tegmentosum Maxim (Aceraceae) showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of active constituent, (+)-catechin. (+)-Catechin showed inhibitory activity on adipocyte differentiation in dose-dependent manner. Further studies with interval treatment demonstrated that (+)-catechin exerted inhibitory activity on adipocyte differentiation via acting on early stage of adipogenesis. Our present study also showed that (+)-catechin significantly inhibited the preadipocyte proliferation. Taken together, these results suggest that (+)-catechin, a constituent of A. tegmentosum might contribute the anti-adipogenic activity of A. tegmentosum.

Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes (Adipogenesis관련 유전자발현감소와 Cell Cycle Arrest를 통한 EGCG와 Glucosamine-6-Phosphate의 Anti-Obesity 효과)

  • Kim, Kkot Byeol;Jang, Seong hee
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Purpose: Several studies have proven that EGCG, the primary green tea catechin, and glucosamine-6-phosphate (PGlc) reduce triglyceride contents in 3T3-L1 adipocytes. The objective of this study is to evaluate the combination effect of EGCG and PGlc on decline of accumulated fat in differentiated 3T3-L1 adipocytes. Methods: EGCG and PGlc were administered for 6 day for differentiation of 3T3-L1 adipocytes. Cell viability was measured using the CCK assay kit. In addition, TG accumulation in culture 3T3-L1 adipocytes was investigated by Oil Red O staining. We examined the expres-sion level of several genes and proteins associated with adipogenesis and lipolysis using real-time RT-PCR and Western blot analysis. A flow cytometer Calibar was used to assess the effect of EGCG and PGluco on cell-cycle progression of differentiating 3T3-L1 cells. Results: Intracelluar lipid accumulation was significantly decreased by combination treatment with EGCG $60{\mu}M$ and PGlc $200{\mu}g/m$ compared with control and EGCG treatment alone. In addition, use of combination treatment resulted in directly decreased expression of $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1. In addition, it inhibited adipocyte differentiation and adipogenesis through downstream regulation of adipogenic target genes such as FAS, ACSL1, and LPL, and the inhibitory action of EGCG and PGlc was found to inhibit the mitotic clonal expansion (MCE) process as evidenced by impaired cell cycle entry into S phase and the S to G2/M phase transition of confluent cells and levels of cell cycle regulating proteins such as cyclin A and CDK2. Conclusion: Combination treatment of EGCG and PGlc inhibited adipocyte differentiation through decreased expression of genes related to adipogenesis and adipogenic and cell cycle arrest in early stage of adipocyte differentiation.

Callophyllis japonica extract improves high-fat diet-induced obesity and inhibits adipogenesis in 3T3-L1 cells

  • Kang, Seong-Il;Shin, Hye-Sun;Kim, Hyo-Min;Yoon, Seon-A;Kang, Seung-Woo;Ko, Hee-Chul;Kim, Se-Jae
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.447-454
    • /
    • 2012
  • The anti-obesity potential of an ethanolic extract of the edible red alga Callophyllis japonica extract (CJE) was investigated in mice fed a high-fat diet (HFD). CJE administration into HFD mice revealed suppression of body weight, adipose tissue weight, serum total cholesterol, triglyceride, and glucose levels in a dose-dependent manner. Also, it reduced serum levels of glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and lactate dehydrogenase, as well as the accumulation of fatty droplets in liver tissue. CJE and its ethyl acetate fraction inhibited adipogenesis in 3T3-L1 adipocytes by down-regulating the adipocyte-specific transcriptional regulators. Taken together, these results suggest that CJE reduces obesity in mice fed an HFD by inhibiting lipid accumulation and adipogenesis in the adipose tissues.

Antioxidative Activities and Inhibitory Effects on Lipid Accumulation of Extracts from Different Parts of Morus alba and Cudrania tricuspidata (뽕나무(Morus alba)와 꾸지뽕나무(Cudrania tricuspidata)의 부위에 따른 항산화 활성 및 3T3-L1세포 지방축적 억제 효과)

  • Kim, Gun-Hee;Kim, Eunhyang
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.138-147
    • /
    • 2019
  • In this study, we examined antioxidative effects and the anti-adipogenesis effect of different parts of Cudrania tricuspidata (C), and Morus alba (M). Total polyphenol contents were highest in M-root ($34.56{\pm}0.045mg\;GAE/g$), and there was no significant difference, between C-root and M-leaf. Total flavonoid contents of C-root were highest ($23.07{\pm}0.004mg\;QE/g$). To examine antioxidant activities of C and M extracts, DPPH and ABTS radical scavenging activity, and FRAP assay, was used. Results show that antioxidant activities of C and M extracts increased, in a dose-dependent manner. Adipocytes are generated by preadipocyte differentiation, during adipogenesis. Matured adipocytes accumulate in abnormal and cause obesity. We investigated effects of leaf and root extracts of C and M, on lipid accumulation, in 3T3-L1 adipocytes. Changes in cell morphology, and degrees of lipid accumulation in adipocytes, were evaluated by Oil Red O staining. Root extracts of C and M, reduced lipid content in a dose-dependent manner. Therefore, root extracts of C and M, may be good candidates for managing obesity.

Ethanol extract of Plantago asiatica L. controls intracellular fat accumulation and lipid metabolism in 3T3-L1 Adipocytes (차전초의 에탄올추출물이 3T3-L1 지방세포의 지방축적 및 지질대사에 미치는 영향)

  • Jeon, Seo Young;Park, Ji Young;Shin, Insoon;Kim, Sung Ok;An, Hee Duk;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • Objectives : The effects of ethanol extract of Plantago asiatica L. were investgated on adipocyte differentiation, lipopogenesis, lipolysis and apoptosis using differnentiated 3T3-L1 adipocytes. Methods : Plantago asiatica L. was extracted with ethanol (CCE). We carried on MTT assay for cell proliferation, Oil Red O staining for determination of cell differentiation and intracelluar adipogenesis. TUNEL staining assay for cell apoptosis, and Western blot analysis for measurement of pAMPK and pACC, $C/EBP{\alpha}$, $PPAR{\gamma}$ protein expressions were performed. Results : The addition of CCE up to 0.2 mg/ml into cell culture media showed no cytotoxicity. Treatment of 0.2 mg/ml CCE significantly inhibited differentiation in 3T3-L1 preadipocytes. Lipid accumulation of the CCE treated cells was decreased compared with that of control. Induction of cell apoptosis was increased in CCE treated cells compared with that of control. AMPK and ACC levels of the cells with 0.2 mg/ml CCE were led to phosphorylation and also expressions of $C/EBP{\alpha}$ and $PPAR{\gamma}$, as adipogenic transcription factors, were suppressed compared with those of control. Conclusions : Taken together, these results provide evidence that CCE has a regulatory role in lipid metabolism that is related to differentiation into adipocytes, adipogenesis and apoptosis.

Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation (지방세포의 분화에 미치는 Acacia catechu 추출물의 항비만 효과)

  • Kim, Dong-Gyu;Kang, Min Jung;Suh, Hwa Jin;Kwon, Oh Oun;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1107-1113
    • /
    • 2016
  • The purpose of this study was to investigate the effects of catechu water extract on adipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated with adipogenic regents by incubation for 9 days in the absence or presence of catechu extract ranging from $1{\sim}200{\mu}g/mL$. The effect of catechu extracts on cell proliferation of 3T3-L1 preadipocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of catechu extracts on 3T3-L1 differentiation was examined by measuring intracellular lipid droplet and triglyceride contents. These results were obtained from preadipocyte proliferation and adipocyte differentiation of 3T3-L1. Catechu extracts inhibited lipid accumulation and remarkably decreased triglyceride contents in 3T3-L1 preadipocytes at a concentration showing no cytotoxicity. The anti-adipogenic effects of catechu appeared to be mediated by significant down-regulation of expression of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c proteins apart from expression of hormone-sensitive lipase. We suggest that catechu extracts significantly inhibit adipogenesis and can be used for regulation of obesity.

1,25-dihydroxyvitamin D3 affects thapsigargin-induced endoplasmic reticulum stress in 3T3-L1 adipocytes

  • Dain Wi;Chan Yoon Park
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Endoplasmic reticulum (ER) stress in adipose tissue causes an inflammatory response and leads to metabolic diseases. However, the association between vitamin D and adipose ER stress remains poorly understood. In this study, we investigated whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with different concentrations (i.e., 10-100 nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0-7, 3-7, or 7). They were then incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and adipogenesis using real-time polymerase chain reaction and western blotting and quantified the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr. RESULTS: Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes. CONCLUSIONS: Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and inflammatory responses in mature adipocytes by downregulating UPR signaling via binding with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the reduction of ER stress in adipocytes.

Comparative Study on the Differentiation Effect of Adipogenesis in 3T3-L1 Preadipocyte by 65 Herbal Medicine Prescriptions (65종 한약처방이 3T3-L1 지방전구세포의 지방 분화에 미치는 효능 비교 연구)

  • Choi, Hye-Min;Yu, Byung-Woo;Kim, Min-Ju;Kim, Jung-Ok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.78-87
    • /
    • 2020
  • Objectives: To expand and provide information on the efficacy of herbal medicines, anti-obesity effects were evaluated. In many studies, plant-derived components with anti-obesity efficacies have been investigated for their potential inhibitory effects on 3T3-L1 preadipocyte cells. The purpose of this study was to investigate the anti-obesity effects of 65 herbal medicine in 3T3-L1 preadipocyte cells. Methods: Preferentially, 3T3-L1 cells were treated with 65 herbal medicines (500 ㎍/mL) during differentiation for 8 days. Next, 3T3-L1 cells were treated with selected herbal medicines at concentrations ranging from 50 to 200 ㎍/mL during differentiation for 8 days. The accumulation of lipid droplets was determined by Oil Red O staining. The expressions of genes related to adipogenesis were measured by reverse transcription polymerase chain reaction and Western blot analyses. Results: Among the 65 kinds of herbal medicines, 13 herbal medicines that been shown to be effective against the accumulation of lipid droplets were selected. Finally, selected Banhasasim-tang and Samhwangsasim-tang showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affecting cell toxicity. In addition, Banhasasim-tang and Samhwangsasim-tang significantly reduced the expression levels of several adipocyte marker genes including peroxisome proliferator activated receptor-γ and CCAAT/enhancer binding protein-α. Conclusions : These results suggest that the ability of Banhasasim-tang and Samhwangsasimtang has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. Banhasasim-tang and Samhwangsasim-tang may be a promising medicine for the treatment of obesity and related metabolic disorders.