• Title/Summary/Keyword: 3T3-L1 adipogenesis

Search Result 278, Processing Time 0.038 seconds

Effects of Fluid Shear Stress on 3T3-L1 Preadipocytes (유체전단응력에 의하여 3T3-L1 지방세포가 받는 영향)

  • Lee, Jeongkun;Lee, Yeong Hun;Jin, Heewon;Lee, Seohyun;Kim, Chi Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.168-174
    • /
    • 2018
  • Adipocytes affect obesity through the regulation of lipid metabolism. Physical loading is an important regulator of fat tissue. There are ongoing in vitro studies inducing mechanotransduction on 3T3-L1 preadipocytes with mechanical stimulus in order to treat obesity by inhibiting adipogenesis and provoking cell death. In this study, our goal was to suggest a new therapy for obesity by investigating whether fluid shear stress (FSS) changes transcription factors on 3T3-L1 related with adipogenesis and cell death. FSS loading was applied to 3T3-L1 preadipocytes at 1Pa and 1Hz. After loading, bright field images were taken and an immunofluorescence assay was conducted to observe actin stress fiber formation. Western blot analysis was conducted to identify the activation of the ERK pathway as well as the adipogenic factors, which including C/EBPs and $PPAR{\gamma}$. The expression of osteopontin, a protein related to inflammation in adipose tissue, and cell death related factors, Bax, Bcl-2, and Beclin, were also measured. Results showed that FSS stimulated the formation of actin stress fibers in 3T3-L1 and also that the activation of C/EBPs decreased significantly when compared with the control group. $PPAR{\gamma}$ activation in the 2 hour FSS group was lower than the 1 hour FSS group, which implied that the results were time dependent. Additionally, there were no differences in the expression of cell death factors after FSS loading. In summary, similar to other fibroblasts, the formation of actin stress fibers induced by mechanotransduction may affect the differentiation of 3T3-L1, leading to inhibition of adipogenesis and inflammation.

Effects of Genistein on Cell Proliferation and Adipogenesis in Mouse 3T3-L1 Preadipocytes (이소플라본 genistein이 전지방세포 성장 및 지방세포형성과정에 미치는 영향)

  • Lim, Seung-Hyun;Kim, Hyo-Rim;Kim, Min-Jeong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • The effects of genistein on cell proliferation and adipogenesis were examined in mouse 3T3-L1 preadipocyte cells. Genistein decreased viability of 3T3-L1 pre-adipocytes in a dose-dependent manner. Oil Red O staining of these cells also indicated that adipogenesis was inhibited by 50 ${\mu}M$ genistein treatment. We investigated the molecular mechanisms involved in the decrease in cell viability in genistein-treated 3T3-L1 cells by conducting an oligo DNA microarray analysis. We selected the sirtuin-1 gene, one of the upregulated genes, for further experimentation because sirtuin-1 belongs to the sirtuin family, which is associated with anti-obesity and anti-inflammation activities. We found that four phytochemicals (resveratrol, capsaicin, daidzein, and genistein) could increase sirtuin-1 expression. Genistein was the strongest inducer of sirtuin-1 among the tested phytochemicals. The inhibition of adipogenesis by genistein was recovered by surtuin-1 siRNA transfection. Overall, these results may further our understanding of the molecular mechanisms underlying the inhibition of proliferation and adipogenesis by genistein in mouse 3T3-L1 cells.

Acer okamotoanum Nakai Leaf Extract Inhibits Adipogenesis Via Suppressing Expression of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kim, Eun-Joo;Kang, Min-jae;Seo, Yong Bae;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1645-1653
    • /
    • 2018
  • The genus Acer contains several species with various bioactivities including antioxidant, antitumor and anti-inflammatory properties. However, Acer okamotoanum Nakai, one species within this genus has not been fully studied yet. Therefore, in this study, we investigated the anti-adipogenic activities of leaf extract from A. okamotoanum Nakai (LEAO) on 3T3-L1 preadipocytes. Adipogenesis is one of the cell differentiation processes, which converts preadipocytes into mature adipocytes. Nowadays, inhibition of adipogenesis is considered as an effective strategy in the field of anti-obesity research. In this study, we observed that LEAO decreased the accumulation of lipid droplets during adipogenesis and down-regulated the expression of key adipogenic transcription factors such as peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and CCAAT/enhancer binding protein ${\alpha}$ (C/EBP ${\alpha}$). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote adipogenesis by inducing the expression of PPAR ${\gamma}$. LEAO also activated ${\beta}$-catenin signaling, which prevents the adipogenic program by suppressing the expression of PPAR ${\gamma}$. Therefore, we found that treatment with LEAO is effective for attenuating adipogenesis in 3T3-L1 cells. Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing obesity.

Inhibitory Effect of the Ethyl Acetate Fraction from Tulip Tree Leaf (Liriodendron tulipifera L.) on Adipogenesis in 3T3-L1 Cells

  • Nam, Hajin;Jung, Harry;Kim, Jin Kyu;Suh, Jun Gyo
    • Natural Product Sciences
    • /
    • v.19 no.3
    • /
    • pp.263-268
    • /
    • 2013
  • The inhibitory effects of adipogenesis on ethyl acetate (EtOAc) fraction from leaves of the Tulip tree (TT) were evaluated. Exposure to TT EtOAc fraction (25~200 ${\mu}g/mL$) for a 72 hr incubation period did not significantly change cell viability. TT EtOAc fraction, with concentrations of 100 and 200 ${\mu}g/mL$, inhibited lipid accumulation in 3T3-L1 adipocytes in a dose dependent manner in adipogenesis. The expression of $PPAR{\gamma}$ and $C/EBP{\alpha}$, essential adipogenic markers, was significantly decreased when TT EtOAc fraction was added to cells for 8 days as compared with the untreated control group. These results suggest that TT EtOAc fraction might be a potential therapeutic agent as an effective, natural alternative material for obesity treatment.

Inhibitory Effect of Cymbopogon Citratus Ethanol Extracts on Adipogenesis in 3T3-L1 Preadipocytes (레몬그라스 에탄올 추출물의 3T3-L1 지방세포 분화 억제효과)

  • Jo, Yong Seok;Ju, Sung Min;Hwang, Keum Hee;Kim, Min Sook;Kim, Kwang Sang;Jeon, Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Cymbopogon citratus, commonly know as lemongrass, prossesses strong antioxidant, anti-tumor and anti-inflammatory properties. Howerver, its anti-obesity activity remains to be elucidated. This study investigated the effect of ethanol extract of Cymbopogon citratus on adipogenesis, and its underlying mechanism, in 3T3-L1 preadipocytes. The results demonstrated that ethanol extracts of Cymbopogon citratus effectively suppressed intercellular lipid accumulation at non-toxic concentrations, and was associated with the down-regulation of adipocyte-specific transcription factors, including $C/EBP{\alpha}$ and $PPAR{\gamma}$, and phosphorylation of $AMPK{\alpha}$. Furthermore, ethanol extracts of Cymbopogon citratus increased p21 and p21 expression, while the expression of CDK2, cyclin A and cyclin B1 was reduced. As a result, ethanol extracts of Cymbopogon citratus seems to induce G0/G1 cell cycle arrest of 3T3-L1 cells. On the other hand, ERK and Akt signaling pathways were not involved in anti-adipogenesis by ethanol extracts of Cymbopogon citratus. Taken together, theses results suggest that ethanol extracts of Cymbopogon citratus inhibits adipocyte differentiation in 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.

Anti-adipogenic Effect of Kaempferol, a Component of Polygonati Rhizoma (황정(黃精)과 Kaempferol의 지방세포 분화 억제 효과)

  • Jang, Jae-Sik;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.158-166
    • /
    • 2010
  • Objective: It has been reported that Polygonati rhizoma (Pr) has anti-hyperglycemia, anti-triglycemia, anti-diabetic, and anti-tumor activity. Total extract of Pr was tested to identify anti-adipogenic activity in 3T3-L1 differentiation and molecular mechanism of Pr in 3T3-L1 differentiation. Methods: Differentiation of 3T3-L1 pre-adipocyte was induced in the presence of Pr extract and kaempferol. The level of lipid accumulation was measured by Oil Red O staining. The expression of genes associated with adipocyte differentiation was measured by RT-PCR. Results: Extract of Pr and its component kaempferol reduced lipid accumulation in 3T3-L1 during adipogenesis and also reduced mRNA levels of genes associated with adipogenesis, such as adipsin, aP2, LPL, SERBP-1c and $PPAR{\gamma}$. Conclusions: In this study, we showed that the molecular mechanism of Pr and kaempferol activity is related to regulation of $PPAR{\gamma}$ expression and activation.

Crude Extract and Solvent-Partitioned Fractions of the Halophyte Atriplex gmelinii Inhibit Adipogenesis in 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에서 염생식물 Atriplex gmelinii의 조추출물과 용매 분획물의 지방세포분화 억제)

  • Jung Im Lee;Jung Hwan Oh;Chang-Suk Kong;Youngwan Seo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.69-77
    • /
    • 2023
  • Objectives: Atriplex gmelinii C. A. Meyer is a halophyte belonging to the Chenopodiaceae family, and its young leaves and stems are used as fodder for livestock. The aim of the present study was to investigate the effects of A. gmelinii extract and its solvent fractions on lipid accumulation during adipogenesis of 3T3-L1 preadipocytes. Methods: The samples of A. gmelinii were separately extracted using methylene chloride and methanol. Subsequently, they were combined to formulate the initial extract, which was then partitioned based on polarity to prepare solvent fractions. Oil Red O staining was employed to measure lipid accumulation during the differentiation of 3T3-L1 preadipocytes. To verify cytotoxicity in 3T3-L1 cells, MTT assays were conducted. The expression levels of transcription factors in 3T3-L1 preadipocytes were measured through Western blotting analysis. Results: At 50 ㎍/mL, treatment of A. gmelinii extract and its solvent fractions during the differentiation of 3T3-L1 preadipocytes significantly diminished lipid accumulation with no noteworthy cytotoxicity on cell viability. Additionally, when investigating the biochemical pathways that underlie the prevention of lipid accumulation using solvent fractions, it was found that the n-BuOH and n-hexane fractions significantly decreased the expression of key transcription factors involved in the generation of fat, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP1c). Conclusions: These findings indicate that A. gmelinii can effectively reduce the accumulation of fat in 3T3-L1 adipocytes, making it a potentially valuable material for mitigating and preventing obesity.

Anti-adipogenic Effect of Chlorogenic Acid in 3T3-L1 Adipocytes

  • Park, Se-Eun;Choi, Jun-Hui;Lee, Hyo-Jeong;Seo, Kyoungsun;Kim, Seung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.80-80
    • /
    • 2018
  • Chlorogenic acid is a phenolic compound found in Cudrania tricuspidata fruits. In the present study, the effect of chlorogenic acid on the inhibition of adipogenesis in 3T3-L1 adipocytes was investigated. Cells were stained with Oil red O reagent to detect lipid droplets in adipocytes. The 3T3-L1 cells were lysed and measured for intracellular triglyceride and adipokine by ELISA kit. The protein expression of adipogenesis-related gene was evaluated by Western blot analysis. Chlorogenic suppressed lipid droplet and intracellular triglyceride accumulation in a concentration manner and also decreased secretion of adipokines such as leptin and adiponectin, compared with fully differentiated adipocytes. Treatment of 3T3-L1 cells with chlorogenic acid reduced the protein levels of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and, CCAAT/enhancer binding proteins alpha ($C/EBP{\alpha}$). This indicates that chlrogenic acid was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceridef formation in adipocyte and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$.

  • PDF

Elephant Garlic Extracts Inhibit Adipogenesis in 3T3-L1 Adipocytes (코끼리마늘의 3T3-L1 지방세포 분화억제 효과)

  • Lee, Seul Gi;Hahn, Dongyup;Kim, Soo Rin;Lee, Won Young;Nam, Ju-Ock
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.383-388
    • /
    • 2020
  • Elephant garlic (Allium ampeloprasum L.) has been reported to have several pharmacological effects. However, its anti-adipogenic effect and the possible molecular mechanisms have not yet been reported. In this study, we demonstrate that elephant garlic extracts suppress adipogenesis in 3T3-L1 adipocytes. Raw and steamed elephant garlic extracts (REG and SEG, respectively) suppressed the differentiation of adipocytes and cellular lipid accumulation. Of note, the anti-differentiation effect of REG treatment on 3T3-L1 cells resulted in cytotoxicity, whereas SEG-treated cells displayed no such cytotoxicity. Additionally, SEG treatment significantly reduced the adipogenesis-related gene expression of PPAR γ, C/EBPα, adiponectin, Ap2, and LPL. To our knowledge, these results are the first evidence of the anti-adipogenic effects of elephant garlic extracts on 3T3-L1 adipocytes.

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.