• 제목/요약/키워드: 3D-porous structure

검색결과 97건 처리시간 0.021초

3D-foam 구조의 구리-주석 합금 도금층을 음극재로 사용한 리튬이온배터리의 전기화학적 특성 평가 (Electrochemical Properties of 3D Cu-Sn Foam as Anode for Rechargeable Lithium-Ion Battery)

  • 정민경;이기백;최진섭
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.47-53
    • /
    • 2018
  • Sn-based lithium-ion batteries have low cost and high theoretical specific capacity. However, one of major problem is the capacity fading caused by volume expansion during lithiation/delithiation. In this study, 3-dimensional foam structure of Cu-Sn alloy is prepared by co-electrodeposition including large free space to accommodate the volume expansion of Sn. The Cu-Sn foam structure exhibits highly porous and numerous small grains. The result of EDX mapping and XPS spectrum analysis confirm that Cu-Sn foam consists of $SnO_2$ with a small quantity of CuO. The Cu-Sn foam structure electrode shows high reversible redox peaks in cyclic voltammograms. The galvanostatic cell cycling performances show that Cu-Sn foam electrode has high specific capacity of 687 mAh/g at a current rate of 50 mA/g. Through SEM observation after the charge/discharge processes, the morphology of Cu-Sn foam structure is mostly maintained despite large volume expansion during the repeated lithiation/delithiation reactions.

Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer

  • Lee, Kyu-Yeon;Jung, Hae-Noo-Ree;Mahadik, D.B.;Park, Hyung-Ho
    • 마이크로전자및패키징학회지
    • /
    • 제23권3호
    • /
    • pp.15-20
    • /
    • 2016
  • In an effort to overcome the weakness of aerogel, polymer aerogels have been prepared by copolymerizing the different types of monomers through sol-gel process. Polymerizing the successive phase of a high internal phase emulsion, which has interconnected porous structure, porous polymer aerogel can be manufactured. In this paper, we use the styrene/divinylbenzene chain as a basic monomer structure, and additionally use 2-ethylhexyl methacrylate (2-EHMA) or 2-ethylhexyl acrylate (2-EHA) as monomers for distinguishing the visible mechanical properties of synthesized polymer aerogel. We can observe the different tendency of polymer aerogels by kinds of monomer or ratio. Flexibility and microstructure can be changed by the types of monomer. EHA polymer aerogel shows high flexibility and thin microstructure, and EHMA polymer aerogel shows high hardness and thick microstructure. EHA/EHMA polymer aerogel shows the intermediate nature between them. By utilizing the mechanical properties of three types of polymer aerogels to adequate situation or environment, polymer aerogels could be used as drug agent, ion exchange resin, oil filter and insulator, and so on.

3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조 (3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting)

  • 전상헌;정정화;홍석원
    • 마이크로전자및패키징학회지
    • /
    • 제26권1호
    • /
    • pp.9-15
    • /
    • 2019
  • 본 연구에서는 3차원 기공구조를 지닌 금속 및 고분자 소재를 이용한 수직 마찰모드의 정전기반 나노발전기(triboelectric nanogenerator, TENG) 제조기술을 소개하고 이에 관한 응용 연구를 수행하였다. 다양한 장점을 지닌 3차원 기공구조를 활용하여 설계된 간단하며 효율적인 나노발전기로, 반복적인 접촉/분리를 통해, 120 V에 이르는 순간 전압특성과 최대 출력 $0.74mW/m^2$을 획득하였다. 실제적인 응용 연구로 48개의 발광소자 구동 실험을 실시하였으며, 저전력 소비 전자소자 장치로의 응용 확장성을 확인하기 위해 회로 구성을 통한 커패시터 축적기능을 확인하였다. 본 연구에서 소개하는 정전기반 에너지 하베스팅 기술은 매우 경제적으로 제조할 수 있는 실용적인 접근방식으로, 반복적으로 가해지는 마찰에 의한 정전력을 효율적으로 획득하여 가까운 미래에 자가발전(self-powered)형 소형 전기소자 구동, 휴대형 전자기기 및 대규모의 전자 발전 장치에 적용 가능할 것으로 기대된다.

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

Improvement of the Representative Volume Element Method for 3-D Scaffold Simulation

  • Cheng Lv-Sha;Kang Hyun-Wook;Cho Dong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1722-1729
    • /
    • 2006
  • Predicting the mechanical properties of the 3-D scaffold using finite element method (FEM) simulation is important to the practical application of tissue engineering. However, the porous structure of the scaffold complicates computer simulations, and calculating scaffold models at the pore level is time-consuming. In some cases, the demands of the procedure are too high for a computer to run the standard code. To address this problem, the representative volume element (RVE) theory was introduced, but studies on RVE modeling applied to the 3-D scaffold model have not been focused. In this paper, we propose an improved FEM-based RVE modeling strategy to better predict the mechanical properties of the scaffold prior to fabrication. To improve the precision of RVE modeling, we evaluated various RVE models of newly designed 3-D scaffolds using FEM simulation. The scaffolds were then constructed using microstereolithography technology, and their mechanical properties were measured for comparison.

Simulated of flow in a three-dimensional porous structure by using the IB-SEM system

  • Wang, Jing;Li, Shucai;Li, Liping;Song, Shuguang;Lin, Peng;Ba, Xingzhi
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.651-659
    • /
    • 2019
  • The IB-SEM numerical method combines the spectral/hp element method and the rigid immersed boundary method. This method avoids the problems of low computational efficiency and errors that are caused by the re-division of the grid when the solids move. Based on the Fourier transformation and the 3D immersed boundary method, the 3D IB-SEM system was established. Then, using the open MPI and the Hamilton HPC service, the computational efficiency was increased substantially. The flows around a cylinder and a sphere were simulated by the system. The surface of the cylinder generates vortices with alternating shedding, and these vortices result in a periodic force acting on the surface of the cylinder. When the shedding vortices enter the flow field behind the cylinder, a recirculation zone is formed. Finally, the three-dimensional pore flow was successfully investigated.

복합 산화법과 MEMS 기술을 이용한 RF용 두꺼운 산화막 에어 브리지 및 공면 전송선의 제조 (Fabrication of Thick Silicon Dioxide Air-Bridge and Coplanar Waveguide for RF Application Using Complex Oxidation Process and MEMS Technology)

  • 김국진;박정용;이동인;이봉희;배영호;이종현;박세일
    • 센서학회지
    • /
    • 제11권3호
    • /
    • pp.163-170
    • /
    • 2002
  • 본 논문에서는 양극반응과 복합 산화법($H_2O/O_2$ 분위기에서 $500^{\circ}C$, 1시간 열산화와 $1050^{\circ}C$, 2분간 RTO(Rapid Thermal Oxidation) 공정)을 이용한 두꺼운 OPSL(Oxidized Porous Silicon Layer)을 형성하여 이를 마이크로머시닝 기술을 이용함으로써 $10\;{\mu}m$ 두께의 OPS(Oxidized Porous Silicon) 에어 브리지를 제조하고, 그 위에 전송선로를 형성하여 그 RF 특성을 조사하였다. OPS 에어 브리지 위에 형성된 CPW(Coplanar Waveguide)의 손실이 OPSL 위에 형성된 전송선의 삽입손실보다 약 2dB 정도 적은 것을 보여주었으며, 반사손실은 OPSL 위에 형성된 전송선의 반사손실보다 적으며 약 -20 dB를 넘지 않고 있다. 본 연구에서 개발한 산화된 다공질 실리콘 멤브레인 및 에어 브리지 구조는 CMOS 공정 후에 사용 가능하며, 초고주파 회로 설계시 편리성과 유용성을 제시하고 있다.

브레이드 프리폼의 투과율 계수 예측 (Prediction of Permeability for Braided Preform)

  • Youngseok Song;Youn, Jae-Roun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.184-187
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional circular braided preform is critical to understand the resin transfer molding process of composites. The permeability can be predicted by considering resin flow through the multi-axial fiber structure. In this study, permeability tensor for a 3-D circular braided preform is calculated by solving a boundary problem of a periodic unit cell. Flow field through the unit cell is obtained by using a 3-D finite volume method (FVM) and Darcy's law is utilized to obtain permeability tensor. Flow analysis for two cases that a fiber tow is regarded as impermeable solid and permeable porous medium is carried out respectively. It is found that the flow within the intra-tow region of the braided preform is negligible if inter-tow porosity is relatively high but the flow through the tow must be considered when the porosity is low. To avoid checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity variation is proposed on the basis of analytic solutions. Permeability of the braided preform is measured through a radial flow experiment and compared with the permeability predicted numerically.

  • PDF

해빈경사에 따른 잠제 개구부의 3차원적인 흐름특성에 관한 연구 (A Study on Effect of Beachface Gradient on 3-D Currents around the Open Inlet of Submerged Breakwaters)

  • 이우동;허동수;박종배;안성욱
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.7-15
    • /
    • 2009
  • The aim of this study was to survey the effects of the beachface gradient on 3-D currents around the open inlets of submerged breakwaters. First, the numerical model was validated by a comparison with existing experimental data. This model is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve?Structure?Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D). Using the numerical results of this model, the 3-D currents around the open inlets of submerged breakwaters were examined in relation to the beachface gradient. Moreover, the wave height distribution and mean flow around them are also discussed, as well as the distribution of the wave breaking points over the crest.

Investigation of Narrow Pore Size Distribution on Carbon Dioxide Capture of Nanoporous Carbons

  • Meng, Long-Yue;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3749-3754
    • /
    • 2012
  • Nanoporous carbons with a high specific surface area were prepared directly from thermoplastic acrylic resin as carbon precursor and MgO powder as template by carbonization over the temperature range, $500-1000^{\circ}C$. The effect of the carbonization temperature on the pore structure and $CO_2$ adsorption capacity of the obtained porous carbon was examined. The textural properties and morphology of the porous carbon materials were analyzed by $N_2/-196^{\circ}C$ and $CO_2/0^{\circ}C$ adsorption/desorption isotherms, SEM and TEM. The $CO_2$ adsorption capacity of the prepared porous carbon was measured at $25^{\circ}C$ and 1 bar and 30 bar. The specific surface area increased from 237 to $1251m^2/g$, and the total pore volumes increased from 0.242 to $0.763cm^3/g$ with increasing the carbonization temperature. The carbonization temperature acts mainly by generating large narrow micropores and mesopores with an average pore size dependent on the level of carbonization of the MgO-templated nanoporous carbons. The results showed that the MgO-templated nanoporous carbons at $900^{\circ}C$ exhibited the best $CO_2$ adsorption value of 194 mg/g at 1 bar.