Browse > Article
http://dx.doi.org/10.5695/JKISE.2018.51.1.47

Electrochemical Properties of 3D Cu-Sn Foam as Anode for Rechargeable Lithium-Ion Battery  

Jung, Minkyeong (Department of Chemistry and Chemical Engineering, Inha University)
Lee, Gibaek (School of Chemical Engineering, Yeungnam University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.51, no.1, 2018 , pp. 47-53 More about this Journal
Abstract
Sn-based lithium-ion batteries have low cost and high theoretical specific capacity. However, one of major problem is the capacity fading caused by volume expansion during lithiation/delithiation. In this study, 3-dimensional foam structure of Cu-Sn alloy is prepared by co-electrodeposition including large free space to accommodate the volume expansion of Sn. The Cu-Sn foam structure exhibits highly porous and numerous small grains. The result of EDX mapping and XPS spectrum analysis confirm that Cu-Sn foam consists of $SnO_2$ with a small quantity of CuO. The Cu-Sn foam structure electrode shows high reversible redox peaks in cyclic voltammograms. The galvanostatic cell cycling performances show that Cu-Sn foam electrode has high specific capacity of 687 mAh/g at a current rate of 50 mA/g. Through SEM observation after the charge/discharge processes, the morphology of Cu-Sn foam structure is mostly maintained despite large volume expansion during the repeated lithiation/delithiation reactions.
Keywords
Electrodeposition; Cu-Sn alloy; 3D-foam; Lithium ion battery; Anode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K.D. Kepler, J.T. Vaughey, M.M. Thackeray, $Li_xCu_6Sn_5$(0   DOI
2 P.G. Bruce, B. Scrosati, J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 2930-2946.   DOI
3 J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2009) 587-603.
4 B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources 195 (2010) 2419-2430.   DOI
5 M. Noel, R. Santhanam, Electrochemistry of graphite intercalation compounds, J. Power Sources 72 (1998) 53-65.   DOI
6 Y. Liang, J. Frisch, L. Zhi, H. Norouzi Arasi, X. Feng, J.P. Rabe, N. Koch and K. Mullen, Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules, Nanotechnology 20 (2009) 434007.   DOI
7 H.C. Shin, M. Liu, Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries, Adv. Funct. Mater. 15 (2005) 582-586.   DOI
8 O. Akhavan, R. Azimirad, S. Safa, E. Hasani, $CuO/Cu(OH)_2$ hierarchical nanostructures as bactericidal photocatalysts, J. Mater. Chem. 21 (2011) 9634-9640.   DOI
9 M. Haerifar, M. Zandrahimi, Effect of current density and electrolyte pH on microstructure of Mn-Cu electroplated coatings, Appl. Surf. Sci. 284 (2013) 126-132.   DOI
10 S.T. Chang, I.C. Leu, M.H. Hon, Preparation and characterization of nanostructured tin oxide films by electrochemical deposition, Electrochem. Solid-State Lett. 5 (2002) C71-C74.   DOI
11 M. Jung, G. Lee, J. Choi, Electrochemical plating of Cu-Sn alloy in non-cyanide solution to substitute for Ni undercoating layer, Electrochim. Acta 241 (2017) 229-236.   DOI
12 X. Wang, Z. Li, Q. Li, C. Wang, A. Chen, Z. Zhang, R. Fan, L. Yin, Ordered mesoporous $SnO_2$ with a highly crystalline state as an anode material for lithium ion batteries with enhanced electrochemical performance, CrystEngComm 15 (2013) 3696-3704.   DOI
13 G. Zhou, D.W. Wang, L. Li, N. Li, F. Li, H.M. Cheng, Nanosize $SnO_2$ confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage, Nanoscale 5 (2013) 1576-1582.   DOI
14 H. Mukaido, T. Sumi, T. Yokoshima, T. Momma, T. Osaka, Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries, Electrochem. Solid-State Lett. 6 (2003) A218-A220.   DOI
15 G.X. Wang, L. Sun, D.H. Bradhurst, S.X. Dou, H.K. Liu, Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling, J. Alloys Compd. 299 (2000) L12-L15.   DOI
16 S.D. Beattie, J.R. Dahn, Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries, J. Electrochem. Soc. 150 (2003) A894-A898.   DOI
17 Y.L. Kim, H.Y. Lee, S.W. Jang, S.J. Lee, H.K. Baik, Y.S. Yoon, Y.S. Park, S.M. Lee, Nanostructured $Ni_3Sn_2$ thin film as anodes for thin film rechargeable lithium batteries, Solid State Ionics 160 (2003) 235-240.   DOI
18 Y. Xu, Optimizing Sn-based anode nanostructure and binder material for use in high-performance lithium-ion batteries, Master of philosophy thesis, Institute for superconducting & electronic materials, Univeristy of Wollongong, 2016.
19 L. Xue, Z. Fu, Y. Yao, T. Huang, A. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries, Electrochim. Acta 55 (2010) 7310-7314.   DOI
20 J. Qin, X. Zhang, N.Q. Zhao, C.S. Shi, E.Z. Liu, J.J. Lia, C.N. He, Carbon-coated $Ni_3Sn_2$ nanoparticles embedded in porous carbon nanosheets as a lithium ion battery anode with outstanding cycling stability, RSC Adv. 4 (2014) 49247-49251.   DOI
21 D.H. Nam, R.H. Kim, D.W. Han, H.S. Kwon, Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries, Electrochim. Acta 66 (2012) 126-132.   DOI
22 W.J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries, J. Power Sources 196 (2011) 877-885.   DOI
23 M. Zhao, Q. Zhao, J. Qiu, H. Xue, H. Pang, Tin-based nanomaterials for electrochemical energy storage, RSC Adv. 6 (2016) 95449.   DOI
24 B. Wang, B. Luo, X. Li, L. Zhi, The dimensionality of Sn anodes in Li-ion batteries, Mater. Today 15 (2012) 544-552.   DOI
25 M. Winter, J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta 45 (1999) 31-50.   DOI
26 Y. Xie, C.Z. Wu, Design of nano architecture electrode materials applied in new-generation rechargeable lithium ion batteries, Dalton Trans. (2007) 5235-5240.
27 J.H. Um, H. Park, Y.H. Cho, M.P.B. Glazer, D.C. Dun, H. Choe, Y.E. Sung, 3D interconnected $SnO_2$- coated Cu foam as a high-performance anode for lithium-ion battery applications, RSC Adv. 4 (2014) 58059.   DOI
28 L.Y. Beaulieu, S.D. Beattie, T.D. Hatchard, J.R. Dahn, The electrochemical reaction of lithium with tin studied by in situ AFM, J. Electrochem. Soc. 150 (2003) A419-A424.   DOI
29 J.O. Besenhard, J. Yang, M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?, J. Power Sources 68 (1997) 87-90.   DOI
30 H. Tian, F. Xin, X. Wang, W. He, W. Han, High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries, Journal of Materiomics 1 (2015) 153-169.   DOI