• 제목/요약/키워드: 3D-based equivalent model

검색결과 83건 처리시간 0.062초

Power Integrity and Shielding Effectiveness Modeling of Grid Structured Interconnects on PCBs

  • Kwak, Sang-Keun;Jo, Young-Sic;Jo, Jeong-Min;Kim, So-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권3호
    • /
    • pp.320-330
    • /
    • 2012
  • In this paper, we investigate the power integrity of grid structures for power and ground distribution on printed circuit board (PCB). We propose the 2D transmission line method (TLM)-based model for efficient frequency-dependent impedance characterization and PCB-package-integrated circuit (IC) co-simulation. The model includes an equivalent circuit model of fringing capacitance and probing ports. The accuracy of the proposed grid model is verified with test structure measurements and 3D electromagnetic (EM) simulations. If the grid structures replace the plane structures in PCBs, they should provide effective shielding of the electromagnetic interference in mobile systems. An analytical model to predict the shielding effectiveness (SE) of the grid structures is proposed and verified with EM simulations.

기기 건전성 평가를 위한 3차원 J-적분 계산 전산코드 응용평가 연구 (Development of 3-D J-Integral Calculation Method for Structural Integrity Evaluation)

  • 김영진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.450-454
    • /
    • 1999
  • In order to evaluate the integrity of nuclear power plants, J-integral calculation is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, high cost time consuming preprocess should be performed to design the finite element model of a cracked structure. Also, the J-integral should be verified by alternative method since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI(Domain Integral) and EDI(Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently.

  • PDF

복합단면을 갖는 비 감쇠 보 구조물의 유한요소 고유치 해석 (Finite Element Eigen Analysis of Undamped Beam Structure with Composite Sections)

  • 박근만;조진래;정의봉;배수룡
    • 한국전산구조공학회논문집
    • /
    • 제20권6호
    • /
    • pp.691-697
    • /
    • 2007
  • 보 구조물의 고유치 해석의 경우 보 이론에 근거한 기존의 다양한 방법들을 통해 효율적이고 수월하게 수행이 가능하다. 하지만 보의 단면이 두 가지 이상의 복합재질로 구성되어 있을 경우 전통적인 보 이론을 적용하기 위해서는 단일의 등가 물성을 산출해야할 필요가 있다. 본 논문에서는 복합단면 보 구조물의 효율적인 유한요소 고유치 해석을 위해 등가의 물성을 산출하였다. 이론 연구를 토대로 개발한 연구용 프로그램으로 대표적인 보 구조물에 대한 유한요소 고유치 해석을 수행하였으며, 해석결과에 대한 신뢰성 검증을 위해 상용 소프트웨어인 ANSYS의 3차원 솔리드 모델의 해석결과와 비교하였다.

특성임피던스 분석을 사용한 커넥터 성능향상 (Improvement of Connector Performance Using Analysis of Characteristic Impedance)

  • 양정규;김문정
    • 대한전자공학회논문지TC
    • /
    • 제48권9호
    • /
    • pp.47-53
    • /
    • 2011
  • 본 논문에서는 커넥터의 특성임피던스 추출, 분석 방법 및 설계 변경 방법을 제안하고 임피던스를 정합하여 신호 전달 특성을 개선한다. 3차원 FEM(Finite Element Method) 전자기장(Electro-Magnetic Field) 시뮬레이터를 이용하여 커넥터의 S-파라미터를 계산하고 반사손실 및 삽입손실을 추출한다. 커넥터의 신호 전달 특성은 반사손실이 0.9 GHz 이후부터 -20 dB 이상의 값으로 높게 나타났다. 신호 전달 특성이 낮은 원인을 파악하기 위해서 회로 해석 시뮬레이터를 이용하여 커넥터의 등가 회로 모델을 추출하고 특성임피던스를 계산하였다. 커넥터의 특성임피던스는 $90.3{\Omega}$으로 임피던스 부정합이 발생하여 신호 전달 특성이 저하되었다. 따라서 신호 전달 특성을 개선할 목적으로 임피던스를 정합하기 위해서 커넥터의 커패시턴스를 증가시켰다. 이러한 설계 방안으로 커넥터 신호선의 유효 면적을 확장하고, 커넥터의 몸체 소재로 고유전체를 사용하였다. 설계 변경된 커넥터의 특성임피던스는 $58.6{\Omega}$으로 임피던스 정합에 보다 근접하여 커넥터의 반사손실이 대략 10 dB 향상되었다. 신호선의 유효 면적 증가에 의한 반사손실 개선과 고유전체의 적용으로 전자기파의 신호선 주변 집중에 의해서 삽입손실 또한 개선되었다.

Low Reverse Saturation Current Density of Amorphous Silicon Solar Cell Due to Reduced Thickness of Active Layer

  • Iftiquar, S M;Yi, Junsin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.939-942
    • /
    • 2016
  • One of the most important characteristic curves of a solar cell is its current density-voltage (J-V) curve under AM1.5G insolation. Solar cell can be considered as a semiconductor diode, so a diode equivalent model was used to estimate its parameters from the J-V curve by numerical simulation. Active layer plays an important role in operation of a solar cell. We investigated the effect thicknesses and defect densities (Nd) of the active layer on the J-V curve. When the active layer thickness was varied (for Nd = 8×1017 cm-3) from 800 nm to 100 nm, the reverse saturation current density (Jo) changed from 3.56×10-5 A/cm2 to 9.62×10-11 A/cm2 and its ideality factor (n) changed from 5.28 to 2.02. For a reduced defect density (Nd = 4×1015 cm-3), the n remained within 1.45≤n≤1.92 for the same thickness range. A small increase in shunt resistance and almost no change in series resistance were observed in these cells. The low reverse saturation current density (Jo = 9.62×10-11 A/cm2) and diode ideality factor (n = 2.02 or 1.45) were observed for amorphous silicon based solar cell with 100 nm thick active layer.

Variable Optical Fiber Attenuator Using Bending-Sensitive Fiber

  • Lee, Dong-Ho;Kwon, Kwang-Hee;Song, Jae-Won;Park, Jae-hee
    • Journal of the Optical Society of Korea
    • /
    • 제8권2호
    • /
    • pp.83-89
    • /
    • 2004
  • A variable optical attenuator with a bending-sensitive fiber (BSF) that can be used in optical networks is developed. The refractive index profile of the BSF is divided into four regions which are inner core, center dip of inner core, outer core and clad. The 3-dimensional finite difference beam propagation method (3D FD-BPM) is utilized to find the characteristics of the BSF, so the mode profile of the BSF and optical power attenuation according to the bending are investigated, and the equivalent model of the BSF is made. By using this equivalent model of the BSF, the BSF is fabricated, and the refractive index profile of the BSF is measured, which is similar to refractive index profile of the proposed BSF. The fabricated variable optical fiber attenuator (VOFA) consists of the BSF in a rectangular rubber ring with a fixed bend radius (BR) in a steady state. The VOFA using the proposed BSF was able to attenuate the optical power by more than about -38 ㏈ at certain wavelengths (1540∼1560 nm) based on adjusting the mechanical pressure applied to the upper surface of the rectangular rubber ring with the bent BSF. In addition, the proposed VOFA produced an insertion loss of 0.68 ㏈, polarization dependent loss (PDL) of about 0.5 ㏈, and return loss of less than -60 ㏈.

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation

  • Daraei, Behnam;Shojaee, Saeed;Hamzehei-Javaran, Saleh
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.37-49
    • /
    • 2020
  • In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.

Heuristic Physical Theory of Diffraction for Impedance Polygon

  • Lee, Keunhwa;Park, Sanghyun;Kim, Kookhyun;Seong, Woojae
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.22-32
    • /
    • 2013
  • A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary;Vishesh R. Kar;Karunesh K. Shukla
    • Advances in aircraft and spacecraft science
    • /
    • 제10권2호
    • /
    • pp.127-140
    • /
    • 2023
  • The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

판재의 이방성을 고려한 연성파단모델 개발 (Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy)

  • 박남수;허훈
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.