Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.1.037

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation  

Daraei, Behnam (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Shojaee, Saeed (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Hamzehei-Javaran, Saleh (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Publication Information
Steel and Composite Structures / v.37, no.1, 2020 , pp. 37-49 More about this Journal
Abstract
In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.
Keywords
axially moving; laminated composite beams; critical speeds; free vibration; finite element method; refined beam theory; carrera unified formulation;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9, 87-140. https://doi.org/10.1007/BF02736649.   DOI
2 Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10, 215-296. https://doi.org/10.1007/BF02736224.   DOI
3 Catapano, A., Giunta, G., Belouettar, S. and Carrera, E. (2011), "Static analysis of laminated beams via a unified formulation", Compos. Struct., 94, 75-83. https://doi.org/10.1016/j.compstruct.2011.07.015   DOI
4 Chakraborty, G., Mallik, A.K. and Hatwal, H. (1999), "Non-linear vibration of a traveling beam", Int. J. Nonlinear Mech., 34(4), 655-670. https://doi.org/10.1016/S0020-7462(98)00017-1.   DOI
5 Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of composite laminated beams with curvilinear fibers via refined theories", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2020.1797959.
6 Ghayesh, M.H. and Amabili, M. (2013), "Steady-state transverse response of an axially moving beam with time-dependent axial speed", Int. J. Non-Linear Mech., 49, 40-49. https://doi.org/10.1016/j.ijnonlinmec.2012.08.003.   DOI
7 Ghazanfari, S., Hamzehei-Javaran, S., Alesadi, A. and Shojaee, S. (2019), "Free vibration analysis of cross-ply laminated beam structures using refined beam theories and B-spline basis functions", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2019.1574939.
8 Ghorbanpour Arani, A., Haghparast, E. and BabaAkbar Zarei, H. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529.   DOI
9 Giunta, G., Belouettar, S., Nasser, H., Kiefer-Kamal, E.H. and Thielen, T. (2015), "Hierarchical models for the static analysis of three-dimensional sandwich beam structures", Compos. Struct., 133, 1284-1301. https://doi.org/10.1016/j.compstruct.2015.08.049.   DOI
10 Ghayesh, M.H. and Balar, S. (2010), "Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams", Appl. Math. Model., 34(10), 2850-2859. https://doi.org/10.1016/j.apm.2009.12.019.   DOI
11 Ghayesh, M.H. and Khadem, S.E. (2008), "Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity", Int. J. Mech. Sci., 50(3), 389-404. https://doi.org/10.1016/j.ijmecsci.2007.10.006.   DOI
12 Pakdemirli, M. and Ozkaya, E. (1998), "Approximate boundary layer solution of a moving beam problem", Math. Comput. Appl., 3(2), 93-100. https://doi.org/10.3390/mca3020093.
13 Reddy, J.N. (2013), An Introduction to Continuum Mechanics, Cambridge University Press, Second Edition.
14 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, Second Edition.
15 Rezaee, M. and Lotfan, S. (2015), "Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity", Int. J. Mech. Sci., 96, 36-46. https://doi.org/10.1016/j.ijmecsci.2015.03.017.   DOI
16 Simpson, A. (1973), "Transverse modes and frequencies of beams translating between fixed end supports", J. Mech. Eng. Sci., 15(3), 159-164. https://doi.org/10.1243/JMES_JOUR_1973_015_031_02.   DOI
17 Siylianou, M. and Tabarrok, B. (1994), "Finite element analysis of an axially-moving beam, part II: Stability analysis", J. Sound Vib., 178(4), 455-481. https://doi.org/10.1006/jsvi.1994.1498.   DOI
18 Wickert, J.A. and Mote, C.D. (1990), "Classical vibration analysis of axially moving continua", J. Appl. Mech., 57(3), 738-744. https://doi.org/10.1115/1.2897085   DOI
19 Wickert, J.A. (1992), "Non-linear vibration of a traveling tensioned beam", Int. J. Non-Linear Mech., 27(3), 503-517. https://doi.org/10.1016/0020-7462(92)90016-Z.   DOI
20 Wickert, J.A. and Mote, C.D. (1988), "Current research on the vibration and stability of axially moving materials", Shock Vib. Dig., 20, 3-13.   DOI
21 Yan, Y., Carrera, E., Pagani, A., Kaleel, I. and Miguel, A.G.d. (2020), "Isogeometric analysis of 3D straight beam-type structures by Carrera Unified Formulation", Appl. Math. Model., 79, 768-792. https://doi.org/10.1016/j.apm.2019.11.003   DOI
22 Hwang, S.J. and Perkins, N.C. (1992), "Supercritical stability of an axially moving beam Part II: Vibration and stability analysis", J. Sound Vib., 154, 397-409. https://doi.org/10.1016/0022-460X(92)90775-S.   DOI
23 Giunta, G., Metla, N., Koutsawa, Y. and Belouettar, S. (2013), "Free vibration and stability analysis of three-dimensional sandwich beams via hierarchical models", Compos. Part B Eng., 47, 326-338. https://doi.org/10.1016/j.compositesb.2012.11.017.   DOI
24 Ho-Huu, V., Vo-Duy, T., Duong-Gia, D. and Nguyen-Thoi, T. (2018), "An efficient procedure for lightweight optimal design of composite laminated beams", Steel Compos. Struct., 27(3), 297-310. https://doi.org/10.12989/scs.2018.27.3.297.   DOI
25 Hui, Y., Giunta, G., Belouettar, S., Huang, Q., Hu, H. and Carrera, E. (2017), "A free vibration analysis of three-dimensional sandwich beams using hierarchical one-dimensional finite elements", Compos. Part B Eng., 110, 7-19. https://doi.org/10.1016/j.compositesb.2016.10.065.   DOI
26 Kahya, V., Karaca, S. and Vo, T. (2019), "Shear-deformable finite element for free vibrations of laminated composite beams with arbitrary lay-up", Steel Compos. Struct., 33, 473-487. https://doi.org/10.12989/scs.2019.33.4.473.   DOI
27 Kahya, V. and Turan, M. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Comp. Struct., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415   DOI
28 Kong, L. and Parker, R.G. (2004), "Approximate eigensolutions of axially moving beams with small flexural stiffness", J. Sound Vib., 276(1-2), 459-469. https://doi.org/10.1016/j.jsv.2003.11.027   DOI
29 Lee, U. and Jang, I. (2007), "On the boundary conditions for axially moving beams", J. Sound Vib., 306(3-5), 675-690. https://doi.org/10.1016/j.jsv.2007.06.039   DOI
30 Lee, U., Kim, J. and Oh, H. (2004), "Spectral analysis for the transverse vibration of an axially moving Timoshenko beam", J. Sound Vib., 271(3-5), 685-703. https://doi.org/10.1016/S0022-460X(03)00300-6.   DOI
31 AL-Bedoor, B.O. and Khulief, Y.A. (1996), "An approximate analytical solution of beam vibrations during axial motion", J. Sound Vib., 192(1), 159-171. https://doi.org/10.1006/jsvi.1996.0181.   DOI
32 Alesadi, A., Galehdari, M. and Shojaee, S. (2017a), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013.   DOI
33 Alesadi, A., Galehdari, M. and Shojaee, S. (2017b), "Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation", Mech. Adv. Mater. Struct., 25, 1018-1032. https://doi.org/10.1080/15376494.2017.1342883.   DOI
34 Alesadi, A., Ghazanfari, S. and Shojaee, S. (2019), "B-spline finite element approach for the analysis of thin-walled beam structures based on 1D refined theories using carrera unified formulation", Thin-Wall. Struct., 130, 313-320. https://doi.org/10.1016/j.tws.2018.05.016   DOI
35 Oz, H.R. (2001), "On the vibrations of an axially traveling beam on fixed supports with variable velocity", J. Sound Vib., 239(3), 556-564. https://doi.org/10.1006/jsvi.2000.3077   DOI
36 Alesadi, A., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Spherical Hankel-based free vibration analysis of cross-ply laminated plates using refined finite element theories", Iran. J. Sci. Technol. Trans. Civ. Eng., 44, 127-137. https://doi.org/10.1007/s40996-019-00242-6   DOI
37 Liu, B., Zhao, L., Ferreira, A.J.M., Xing, Y.F., Neves, A.M.A. and Wang, J. (2017), "Analysis of viscoelastic sandwich laminates using a unified formulation and a differential quadrature hierarchical finite element method", Compos. Part B Eng., 110, 185-192. https://doi.org/10.1016/j.compositesb.2016.11.028.   DOI
38 Mokhtari, A. and Mirdamadi, H.R. (2018), "Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: Non-transforming spectral element analysis", Appl. Math. Model., 56, 342-358. https://doi.org/10.1016/j.apm.2017.12.007.   DOI
39 Oz, H.R. and Pakdemirli, M. (1999), "Vibrations of an axially moving beam with time dependent velocity", J. Sound Vib., 227(2), 239-257. https://doi.org/10.1006/jsvi.1999.2247.   DOI
40 Ozkaya, E. and Oz, H.R. (2002), "Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method", J. Sound Vib., 252(4), 782-789. https://doi.org/10.1006/jsvi.2001.3991.   DOI
41 Pagani, A., Carrera, E., Boscolo, M. and Banerjee, J.R. (2014), "Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions", Compos. Struct., 110, 305-316. https://doi.org/10.1016/j.compstruct.2013.12.010.   DOI
42 Pagani, A., Carrera, E. and Ferreira, A.J.M. (2016), "Higher-order theories and radial basis functions applied to free vibration analysis of thin-walled beams", Mech. Adv. Mater. Struct., 23, 1080-1091. https://doi.org/10.1080/15376494.2015.1121555.   DOI
43 Carrera, E., Filippi, M., Mahato, P.K.R. and Pagani, A. (2015), "Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections", J. Comp. Mater., 49(17), 2085-2101. https://doi.org/10.1177/0021998314541570.   DOI
44 Pagani, A. and Carrera, E. (2018), "Unified formulation of geometrically nonlinear refined beam theories", Mech. Adv. Mater. Struct., 25, 15-31. https://doi.org/10.1080/15376494.2016.1232458.   DOI
45 Carrera, E. (1995), "A class of two dimensional theories for multilayered plates analysis", Atti della accad, Delle Sci. Di Torino. Cl. Di Sci. Fis. Mat. e Nat, 19, 1-39.
46 Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46, 194-203. https://doi.org/10.2514/1.32490.   DOI
47 Carrera, E., Filippi, M., Mahato, P.K.R. and Pagani, A. (2016a), "Accurate static response of single- and multi-cell laminated box beams", Compos. Struct., 136, 372-383. https://doi.org/10.1016/j.compstruct.2015.10.020.   DOI
48 Carrera, E., Filippi, M., Mahato, P.K.R. and Pagani, A. (2016b), "Free-vibration tailoring of single- and multi-bay laminated box structures by refined beam theories", Thin-Wall. Struct., 109, 40-49. https://doi.org/10.1016/j.tws.2016.09.014.   DOI
49 Carrera, E. and Giunta, g. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2, 117-143. https://doi.org/10.1142/S1758825110000500.   DOI
50 Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons Ltd, Chichester, West Sussex, United Kingdom. https://doi.org/10.1002/9781119978565.
51 Bathe, K.J. (1996), Finite Element Procedure, Prentice Hall.
52 Carrera, E., Pagani, A. and Banerjee J.R. (2016), "Linearized buckling analysis of isotropic and composite beam-columns by carrera unified formulation and dynamic stiffness method", Mech. Adv. Mater. Struct., 23(9), 1092-1103. https://doi.org/10.1080/15376494.2015.1121524.   DOI