• Title/Summary/Keyword: 3D transition

Search Result 902, Processing Time 0.031 seconds

Ultra-Wideband Microstrip-to-Finite Ground Coplanar Waveguide Transition for Millimeter-Wave Systems (밀리미터파 시스템용 초광대역 마이크로스트립-FGCPW 전이구조 설계)

  • Kim, Young-Gon;Kim, Hong-Rak;Jung, Bae-Ho;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.701-708
    • /
    • 2016
  • A new design for an ultra-wideband microstrip-to-FGCPW(Finite Ground Coplanar Waveguide) transition is presented. The proposed transition provides the electric field and impedance matching between adjacent transmission lines by ground shaping. The transition is designed on the analytical expressions of whole transitional structure. Conformal mapping is applied to obtain the characteristic impedance of FGCPW with bottom aperture within 3.3 % accuracy as compared with the EM-simulation results. As design example, the fabricated transition in back-to-back configuration provides insertion loss less than 1 dB per transition and return loss better than 10 dB for frequencies from 9 GHz to over 40 GHz.

Design and fabrication of rectangular waveguide-to-microstrip transition at Ka-band (Ka-band에서의 구형 도파관-마이크로스트립 변환구조의 설계 및 제작에 관한 연구)

  • 정진호;권영우;장영춘;천창율
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1770-1776
    • /
    • 1998
  • This paper presents a waveguide-to-mircostrip transition at Ka-band using antipodal finlines. Critical design parameters were identified with the help of theoretical analysis. Experimental optimization was performed together with 3-D FEM analysis in an effort to find optimum dimensions of the transition. In addition to the conventional antipodal finline transition, a new dielectric impedance transformer was introduced to further reduce the insertion loss. Optimized waveguide-to-microstrip transition showed an insertion loss of 0.3~0.4dB/transition at Ka-band. This transition provides superior reproducibility and better performance than conventional coaxcable-to-microstrip transition.

  • PDF

Design and Fabrication of the Ka-band Waveguide to Microstrip Transition using Probe structure (프로브 구조를 이용한 Ka 대역 도파관-마이크로스트립 트랜지션의 설계 및 제작)

  • Kwon, Hyuk-Ja;Lee, Sung-Ju;Jang, Ho-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.67-71
    • /
    • 2008
  • We report the waveguide to microstrip transition using probe structure for Ka-band transceiver. The waveguide to microstrip transition is composed of probe, inductive line, ${\lambda}/4$ impedance transformer, and $50{\Omega}$ microstrip line. For design of the transition, we optimized the characteristic impedances and the lengths of the component parts. The fabricated transition exhibits an insertion loss of 1.3 dB and the input/output return losses of below 14 dB between 30 and 40 GHz. The insertion loss of each transition is about $0.5{\sim}0.6dB$, considering the losses in the microstrip line and input/output waveguides.

An Efficient Design for an Ultra-Wideband Microstrip-to-CPS Transition Applicable to Millimeter-Wave Systems (밀리미터파 시스템에 적용 가능한 초광대역 마이크로스트립-CPS 전이구조 설계)

  • Kim, Young-Gon;Kim, Youn-Jin;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.268-275
    • /
    • 2015
  • A clear and efficient design method for ultra-wideband microstrip-to-coplanar stripline(CPS) transition, which is based on the analytical expressions of the whole transitional structure, is presented. The conformal mapping is applied to obtain the characteristic impedance of the transitional structure within 3.2 % accuracy as compared with the EM-simulation results. The transition is designed to provide broadband impedance matching using Klopfenstein taper. The implemented transition performs less than 1 dB insertion loss per transition for frequencies from 5.39~40 GHz.

도파관-마이크로스트립간의 트랜지션 설계

  • 이문수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.9
    • /
    • pp.722-728
    • /
    • 1990
  • A comppact waveguide to microstrip transition to be used for measurements of the performances of the U-band MMIC power amplifier is designed and fabricated. A Tchebyscheff ${\lambda}$/4 impedence transformer is adopted as an impedence converter of the transition. The designed transition is optimized to get Su less then -28dB over the 40-to-48GHZ band using Supper Compact program. The measured results shows that insertion loss and return loss are typically 0.3 and 25dB respectively over 40-to-47GHz.

  • PDF

Bouble Resonance Optical Pumping in the Transition 5S1/2-5P3/2-4D3/2, 5/2 of Rb Atoms (루비듐 5S1/2-5P3/2-4D3/2, 5/2 전이선에서의 이중공명 광펌핑 분광)

  • Moon, H.S.;Lee, L.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2005
  • We present the double resonance optical pumping(DROP) spectra according to the laser power, the polarization combination of lasers, and the alignment of lasers in the transition $5P_{3/2}-4D_{5/2}\;and\;5P_{3/2}-4D_{5/2}$ of $^{87}Rb.$ We observed obviously changing DROP spectrum according to the laser power in the transition $5P_{3/2}-4D_{5/2}$ involved the cycling transition. The laser power effects are attributed to the low optical-pumping-effect in the cycling transition. We observed changing DROP spectrum depending on the polarizations of the lasers. The laser polarization effects are attributed to the changing transition probability according to the polarizations of lasers. We compared the co-propagation with the counter-propagation and the spectral linewidths were 12.2 MHz and 6.9 MHz, respectively.

Wide Band Microstrip line-to-Rectangular Waveguide Transition Using a Radial Probe for Millimeter-wave Applications (밀리미터파 응용을 위해 Radial 프로브 마이크로 스트립-웨이브 가이드 광대역 천이기)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.43-47
    • /
    • 2015
  • In this work, a broadband microstrip (MSL) - to - waveguide (WR12) transition has been presented for millimeter-wave module applications. For improvement of a bandwidth, the radial MSL electrical-probe is designed on the low-loss organic dielectric substrate. The designed and tested characteristics of the proposed transition are characterized in terms of an insertion and return loss. Considering the loss contribution of the cable adapter and waveguide transition for the measurement, the proposed transition loss can be analyzed as -1.88 and -2.01 dB per a transition at 70 and 80 GHz, respectively. The bandwidth of the proposed transition for reflection at -10 dB is 26 GHz at all test frequencies from 67 to 95 GHz. Compared to the state-of-the-art results, improvement of 8.3 % is achieved for the operation bandwidth.

Design of W-band Microstrip-to-Waveguide Transition Structure Using Fin-line Taper (Fin-line taper를 이용한 W-대역 마이크로스트립-도파관 전이구조 설계)

  • Kim, Young-Gon;Yong, Myung-Hun;Lee, Hyeonkeon;Joo, Ji-Han;An, Se-Hwan;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • A high-performance wideband transition from microstrip to waveguide is proposed. This transition is designed by consideration of gradual field transformation and optimal impedance matching between microstrip line and fin-line. Clear design guidelines of proposed transition using fin-line taper with offset DSPSL (double-sided parallel stripline) are provided to determine the transition shape and the transition length. The fabricated transition exhibits less than 0.67 dB insertion loss per transition for frequencies from 85 to 108 GHz, and less than 1 dB insertion loss from 83 to over 110 GHz. Proposed transition is expected compact radar and various applications.

3-D Transition Solid Elements For Adaptive Mesh Gradation (적응적 체눈 세분화를 위한 3차원 입체 변이요소)

  • 최창근;이남호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.3-10
    • /
    • 1993
  • A new three-dimensional transition solid elements was presented for the automated three-dimensional adaptive h-refinement where the steep stress gradient exists. To be consistent with 8-node solid element with nonconforming modes in accuracy, these transition elements were improved through the addition of the associated nonconforming modes. Numerical examples show that the performance of the element and the applicability to 3D adaptations are satisfactory.

  • PDF