BD07

Magnetic Properties of Iron Sulfides Doped with 3d Transition-Metals

Sung Joon Kim and Eng Chan Kim*

Department of Physics, Yeungnam University Gyongsan 712-749, Korea

It is found by Mössbauer measurements on $M_{0.025}$ Fe_{0.975}S (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) that the 3d-transition metal impurities profoundly affect both the crystallographic and spin rotation transitions of iron sulfide. It is noteworthy that both $V_{0.025}$ Fe_{0.975}S and $Co_{0.025}$ Fe_{0.975}S have Morin transition temperatures T_M which are distinctly different from that of FeS; furthermore, the directions of changes of T_M are opposite for $V_{0.025}$ Fe_{0.975}S and $Co_{0.025}$ Fe_{0.975}S. A vanadium impurity of 2.5 % of the metal atoms in the iron sulfide makes the crystallographic transition take place rapidly in a narrow temperature region of about 15 K, while the α transition in FeS takes place over a wide temperature range of about 200 K. It is also found that the transition for $V_{0.025}$ Fe_{0.975}S has a hysteresis width of 5 K. It is very interesting that the crystallographic transition is independent of the lattice parameters while the spin-rotation transition is dependent on them.

Index Terms - phase transition, 3d-transition metal, spin-rotation

BD08

The Effect of Manganese Substituted M-type Hexagonal Ba-ferrite

In Kyu Lee¹, Jung Chul Sur², In-Bo Shim¹, and Chul Sung Kim^{1*}

¹Department of Physics, Kookmin University, 861-1, Chongnung-dong, Songbuk-gu, Seoul 136-702, Korea ²Department of Microelectronics and Display Technology, Wonkwang University, Iksan 570-749, Korea

*Corresponding author: Chul Sung Kim, e-mail: cskim@kookmin.ac.kr

The effect of manganese substitution in ferrimagnetic Ba-ferrite (BaFe_{12-x}Mn_xO₁₉, $0 \le x \le 6$) was investigated by crystallographic and magnetic characteristic measurements. Mn substituted Ba-ferrite polycrystalline powder samples were prepared by modified HTTD (High Temperature Thermal Decomposition) method.[1] The crystal structure of x=0, 2, 4 and 6 samples revealed a M-type hexagonal structure with space group P63/mmc by Rietveld refinement. The lattice constant a_0 was increased and c_0 was decreased with increasing Mn substitution as if it was extended along the a_0 axis direction. Magnetic Curie temperature (T_c) was linearly decreased as shown in temperature dependence of zero field cooled (ZFC) magnetization curve data. Fig.1 show the Mössbauer spectra of BaFe_{12,x}Mn_xO₁₉ (0 \leq x \leq 6) at 200 K. Mössbauer spectra of all samples were analyzed by five sublattice sites such as 4f₂, 2a, 4f₁, 12k, 2b in magnetoplumbite structure for the site occupancy and hyperfine interaction of Fe^{3+} ions. The site occupancy of Fe^{3} ion in each sublattice was analyzed by relative area S(i).[2] From these area ratio, the number of iron ions (NFe(i)) occupied in each five site was calculated, simultaneously, how many Mn ions occupied in Ba-ferrite are obtained. The line-width broadening of Mössbauer spectra with increasing Mn concentration were originated from the effect of a cooperative Jahn-Teller octahedral distortion.[3]

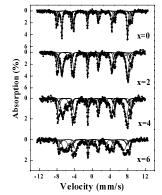


Fig. 1. Mössbauer spectra of $BaFe_{12:x}Mn_xO_{19}$ ($0 \le x \le 6$) at 200 K.

REFERENCES

S. Sun *et al.*, J. Am. Chem. Soc, 124, 8204 (2002).
Z. W. Li *et al.*, Phys. Rev. B, 62, 6530 (2000).
Z. Jirák, Phys. Rev. B, 46, 8725 (1992).