• Title/Summary/Keyword: 3D planning

Search Result 1,229, Processing Time 0.036 seconds

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

Application of Virtual Surgical Planning with Computer Assisted Design and Manufacturing Technology to Cranio-Maxillofacial Surgery

  • Zhao, Linping;Patel, Pravin K.;Cohen, Mimis
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.309-316
    • /
    • 2012
  • Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.

Adaptive Spatial Coordinates Detection Scheme for Path-Planning of Autonomous Mobile Robot (자율 이동로봇의 경로추정을 위한 적응적 공간좌표 검출 기법)

  • Lee, Jung-Suk;Ko, Jung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a intelligent path planning of an automatic mobile robot is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity mad obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene. and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation.

A Study on the Visual Effects of Non-Photorealistic Rendering Animation focusing on 'Paperman,' a Short Animation (넌-포토리얼리스틱(Non-Photorealistic) 렌더링 애니메이션의 시각 효과 기법 - 단편 애니메이션 Paperman을 중심으로)

  • Park, Sung-Won
    • Cartoon and Animation Studies
    • /
    • s.40
    • /
    • pp.139-155
    • /
    • 2015
  • Animation is completed in accordance with the original planning of visual direction in the process of post-production. Especially, a variety of visualization skills to meet the planning idea are directed in editing and compositing processes such as rendering and shading in the production of 3D animation. Therefore, the studies how to implement these visual effects have been conducted since the emergence of the animation. The rendering method which appears in the recent animations so often is the effect of 2D animation style although it is applied by 3D technique. 3D animation can be classified as two types including photo realistic and non-photo realistic renderings. The former is to render the images realistically while the latter is to highlight the formative effect with analogue style free from the realism of the photographs. Visual effect of 2D animation is non-realistic, that is, non-photo realistic rendering. The animations produced by this method have the depth of 3D animation expression in terms of space and animating, and can direct the viewer-friendly analogue style visuals, which are widely used as a post-production effect. Hence in this study, we selected a short animation, 'Paperman,' one of Disney's animations, produced by cartoon rendering method which belongs to the class of non-photo rendering technique in 3D graphics, as our subject. We analyzed their techniques and visual effects of the scenes expressed by cartoon rendering method so as to understand whether they meet the original direction idea with the composition work. In addition, we expect further developments of post-production methods, exceeding the limit of graphic expression in alignment with the trend that has become more various in the types and genres of non-photo rendering.

A phantom production by using 3-dimentional printer and In-vivo dosimetry for a prostate cancer patient (3D 프린팅 기법을 통한 전립샘암 환자의 내부장기 팬텀 제작 및 생체내선량측정(In-vivo dosimetry)에 대한 고찰)

  • Seo, Jung Nam;Na, Jong Eok;Bae, Sun Myung;Jung, Dong Min;Yoon, In Ha;Bae, Jae Bum;Kwack, Jung Won;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose : The purpose of this study is to evaluate the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. Materials and Methods : The phantom is produced to equally describe prostate and rectum based on a 3D volume contour of an actual prostate cancer patient who is treated in Asan Medical Center by using a 3D printer (3D EDISON+, Lokit, Korea). CT(Computed tomography) images of phantom are aquired by computed tomography (Lightspeed CT, GE, USA). By using treatment planning system (Eclipse version 10.0, Varian, USA), treatment planning is established after volume of a prostate cancer patient is compared with volume of the phantom. MOSFET(Metal OXIDE Silicon Field Effect Transistor) is estimated to identify precision and is located in 4 measuring points (bladder, prostate, rectal anterior wall and rectal posterior wall) to analyzed treatment planning and measured value. Results : Prostate volume and rectum volume of prostate cancer patient represent 30.61 cc and 51.19 cc respectively. In case of a phantom, prostate volume and rectum volume represent 31.12 cc and 53.52 cc respectively. A variation of volume between a prostate cancer patient and a phantom is less than 3%. Precision of MOSFET represents less than 3%. It indicates linearity and correlation coefficient indicates from 0.99 ~ 1.00 depending on dose variation. Each accuracy of bladder, prostate, rectal anterior wall and rectal posterior wall represent 1.4%, 2.6%, 3.7% and 1.5% respectively. In- vivo dosimetry represents entirely less than 5% considering precision of MOSFET. Conclusion : By using a 3D printer, possibility of phantom production based on prostate is verified precision within 3%. effectiveness of In-vivo dosimetry is confirmed from a phantom which is produced by a 3D printer. In-vivo dosimetry is evaluated entirely less than 5% considering precision of MOSFET. Therefore, This study is confirmed the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. It is necessary to additional phantom production by a 3D printer and In-vivo dosimetry for other organs of patient.

  • PDF

How is the Social Problem-Solving R&D Done? (사회문제 해결형 연구개발은 어떻게 수행되는가?)

  • Song, Wichin;Seong, Ji-Eun
    • Journal of Science and Technology Studies
    • /
    • v.18 no.3
    • /
    • pp.255-289
    • /
    • 2018
  • The social problem-solving R&D is different from the goal and process in comparison with research aimed at scientific excellence and industrial innovation. It pursues social values and active participation of the end-user civil society. In this study, we try to derive its characteristics by analyzing the cases that are evaluated as successful social problem solving R&D project. In order to analyse the social problem-solving R & D case, these four variables are selected; 1) social and technological planning for problem solving 2) participatory technological development 3) law, system and delivery system development for innovation deployment 4) scale-up of new R&D process. Those are important issues identified through case studies: 1) the tools and support services needed to carry out social and technical planning effectively, 2) the role of the Living Lab to coordinate opinions with experts and users, 3) the legislative and institutional improvement activities as important as technological development, 4) researcher's change through interaction with end user.

Extraction and 3D Visualization of Trees in Urban Environment

  • Yamagishi, Yosuke;Guo, Tao;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1174-1176
    • /
    • 2003
  • Recently 3D city models are required for many applications such as urban microclimate, transportation navigation, landscape planning and visualization to name a few. The existing 3D city models mostly target on modeling buildings, but vegetation also plays an important role in the urban environment. To represent a more realistic urban environment through the 3D city model, in this research, an investigation is conducted to extract the position of trees from high resolution IKONOS imagery along with Airborne Laser Scanner data. Later, a tree growth model is introduced to simulate the growth of trees in the identified tree-positions.

  • PDF

CAPP for 3D Printer with Metallic Wire Supplied from the Front (금속선재 전방공급형 3D프린터를 위한 공정계획)

  • Kim, Ho-chan;Kim, Jae-gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.155-160
    • /
    • 2018
  • The materials used for 3D printing are mainly plastic and metal. These materials are usually used in the powdered form. In order to improve the surface roughness of a manufactured product, these powders should consist of small uniform spherical particles. However, the powdered forms are sold at a considerably higher price than bulk or wired materials. When a wire-type material is used instead of a powder, we can supply a relatively large amount of the material at one time as well as reduce the cost. Moreover, the use of this form of the material will increase the process efficiency. This paper deals with the technology required to feed a wire material in front of the tool movement and discusses the examples used for the verification.

A Study on the 3-D CNC Cutting Planning and Simulation by Z-Map Model (Z-Map 모델을 이용한 3차원 CNC 가공계획 및 절삭시뮬레이션에 관한 연구)

  • 송수용;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.683-688
    • /
    • 1994
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF