A phantom production by using 3-dimentional printer and In-vivo dosimetry for a prostate cancer patient

3D 프린팅 기법을 통한 전립샘암 환자의 내부장기 팬텀 제작 및 생체내선량측정(In-vivo dosimetry)에 대한 고찰

  • Seo, Jung Nam (Department of Radiation Oncology, ASAN Medical Center) ;
  • Na, Jong Eok (Department of Radiation Oncology, ASAN Medical Center) ;
  • Bae, Sun Myung (Department of Radiation Oncology, ASAN Medical Center) ;
  • Jung, Dong Min (Department of Radiation Oncology, ASAN Medical Center) ;
  • Yoon, In Ha (Department of Radiation Oncology, ASAN Medical Center) ;
  • Bae, Jae Bum (Department of Radiation Oncology, ASAN Medical Center) ;
  • Kwack, Jung Won (Department of Radiation Oncology, ASAN Medical Center) ;
  • Baek, Geum Mun (Department of Radiation Oncology, ASAN Medical Center)
  • 서정남 (서울아산병원 방사선종양학과) ;
  • 나종억 (서울아산병원 방사선종양학과) ;
  • 배선명 (서울아산병원 방사선종양학과) ;
  • 정동민 (서울아산병원 방사선종양학과) ;
  • 윤인하 (서울아산병원 방사선종양학과) ;
  • 배재범 (서울아산병원 방사선종양학과) ;
  • 곽정원 (서울아산병원 방사선종양학과) ;
  • 백금문 (서울아산병원 방사선종양학과)
  • Received : 2015.05.29
  • Accepted : 2015.06.24
  • Published : 2015.06.30

Abstract

Purpose : The purpose of this study is to evaluate the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. Materials and Methods : The phantom is produced to equally describe prostate and rectum based on a 3D volume contour of an actual prostate cancer patient who is treated in Asan Medical Center by using a 3D printer (3D EDISON+, Lokit, Korea). CT(Computed tomography) images of phantom are aquired by computed tomography (Lightspeed CT, GE, USA). By using treatment planning system (Eclipse version 10.0, Varian, USA), treatment planning is established after volume of a prostate cancer patient is compared with volume of the phantom. MOSFET(Metal OXIDE Silicon Field Effect Transistor) is estimated to identify precision and is located in 4 measuring points (bladder, prostate, rectal anterior wall and rectal posterior wall) to analyzed treatment planning and measured value. Results : Prostate volume and rectum volume of prostate cancer patient represent 30.61 cc and 51.19 cc respectively. In case of a phantom, prostate volume and rectum volume represent 31.12 cc and 53.52 cc respectively. A variation of volume between a prostate cancer patient and a phantom is less than 3%. Precision of MOSFET represents less than 3%. It indicates linearity and correlation coefficient indicates from 0.99 ~ 1.00 depending on dose variation. Each accuracy of bladder, prostate, rectal anterior wall and rectal posterior wall represent 1.4%, 2.6%, 3.7% and 1.5% respectively. In- vivo dosimetry represents entirely less than 5% considering precision of MOSFET. Conclusion : By using a 3D printer, possibility of phantom production based on prostate is verified precision within 3%. effectiveness of In-vivo dosimetry is confirmed from a phantom which is produced by a 3D printer. In-vivo dosimetry is evaluated entirely less than 5% considering precision of MOSFET. Therefore, This study is confirmed the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. It is necessary to additional phantom production by a 3D printer and In-vivo dosimetry for other organs of patient.

목 적 : 본 연구는 3D 프린터를 이용하여 전립샘부위 팬텀을 제작하고 생체내선량측정(In-vivo dosimetry)을 통해 그 유용성을 평가하고자 한다. 대상 및 방법 : 전립샘암 환자의 3차원 치료체적을 바탕으로 3D 프린터(3D EDISON+, Lokit, KOREA)를 이용하여 전립샘과 직장의 체적을 동일하게 모사한 팬텀을 제작하고, 컴퓨터단층촬영(Lightspeed CT, GE, USA)을 통해 팬텀영상을 획득하였다. 전립샘암 환자의 체적과 팬텀의 체적을 비교 한 후, 전산화치료계획시스템(Eclipse version 10.0, Varian, USA)을 이용하여 치료계획을 설계하였다. 팬텀 내 측정지점인 방광(Bladder), 전립샘(Prostate), 직장 위벽(Rectal anterior wall), 직장 아래벽(Rectal posterior wall)의 임의의 지점에 모스펫검출기(Metal OXIDE Silicon Field Effect Transistor, MOSFET)를 위치시켜 선량 측정값과 치료계획을 비교분석 하였다. 결 과 : 전립샘과 직장풍선의 환자체적은 각각 30.61 cc, 52.19 cc 이고, 팬텀체적은 31.12 cc, 53.52 cc로 각 체적의 차이는 3% 미만으로 확인되었다. 모스펫검출기의 정밀도는 3%이내로 측정되었고 선량의 변화에 따라 상관계수 R2 = 0.99 ~ 1.00 의 선형성을 보였다. 네 곳의 측정 지점을 치료계획된 선량과 비교한 결과 방광 1.4%, 전립샘 2.6%, 직장 위벽 3.7%, 직장 아래벽 1.5%로 나타났고 모스펫검출기의 정밀도를 고려한 선량측정의 정확성은 5% 이내로 평가되었다. 결 론 : 본 실험을 통해 3D 프린터를 이용하여 제작한 전립샘 부위 팬텀은 체적의 차이 3% 미만으로, 인체를 모사하는데 효과적으로 사용될 수 있음을 확인하였다. 제작된 팬텀을 이용한 생체내선량측정은 모스펫검출기의 정밀도를 고려하더라도 방광, 전립샘, 직장 위벽, 직장 아래벽의 모든 측정점에서 5% 이내의 정확도로 수행 할 수 있었다. 따라서 3D 프린트를 이용해 제작된 전립샘 부위 팬텀은 생체선량측정을 하는데 있어 매우 유용하였으며 향후 환자에게 직접 적용하기 어려운 부위를 팬텀으로 대체 제작하여 생체내선량측정이 가능할 것으로 사료된다.

Keywords

References

  1. Kyu-Won Jung, Young-Joo Won, Hyun-Joo Kong, et al.: Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2012 Cancer Research and Treatment. Official Journal of Korean Cancer Association 2015;47(2):127-141 https://doi.org/10.4143/crt.2015.060
  2. Michael J. Zelefsky, Zvi Fuks, Laura Happersett, Henry J. Leea, et al.: Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiotherapy and Oncology 2000;55:241-249 https://doi.org/10.1016/S0167-8140(99)00100-0
  3. Michael J Zelefsky, Zvi Fuks, Margie Hunt, et al.: High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. International Journal of Radiation Oncology*Biology*Physics 2002;53:1111-1116 https://doi.org/10.1016/S0360-3016(02)02857-2
  4. A. Pollack, G.K. Zagars: External beam radiotherapy dose response of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys 1997;39:1011-1018 https://doi.org/10.1016/S0360-3016(97)00508-7
  5. C.E. Hanks, A.L. Hanlon, T.E. Schultheiss, et al.: Dose escalation with 3D conformal treatment: Five year outcomes, treatment optimization, and future directions. Int. J. Radiat. Oncol. Biol. Phys 1998;41:501-510 https://doi.org/10.1016/S0360-3016(98)00089-3
  6. M.J. Zelefsky, S.A. Leibel, P.B. Gaudin, et al.: Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys 1998;41:491-500 https://doi.org/10.1016/S0360-3016(98)00091-1
  7. Teh BS, Dong L, McGary JE, et al.: Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer. Med Dosim 2005;30(1)1:25-30 https://doi.org/10.1016/j.meddos.2004.10.005
  8. Wachter S, Gerstner N, Dorner D, et al.: The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;52(1):91-100 https://doi.org/10.1016/S0360-3016(01)01821-1
  9. Wang-Kyun Oh: Customized Model Manufacturing for Patients with Pelvic Fracture using FDM 3D Printer. The Korea Contents Association;14:370-377
  10. Ju SG, Kim MK, Hong CS, et al.: New technique for developing a proton range compensator with use of a 3-dimensional printer. Radiat Oncol Biol Phys 2014;88(2):453-8 https://doi.org/10.1016/j.ijrobp.2013.10.024
  11. Jung J, Song SY, Yoon SM, et al.: Verification of Accuracy of CyberKnife Tumor-tracking Radiation Therapy Using Patient - specific Lung Phantoms. Radiat Oncol Biol Phys 2015;in press