• Title/Summary/Keyword: 3D object reconstruction

Search Result 195, Processing Time 0.029 seconds

Reconstruction Of Photo-Realistic 3D Assets For Actual Objects Combining Photogrammetry And Computer Graphics (사진측량과 컴퓨터 그래픽의 결합을 통한 실제 물체의 사실적인 3D 에셋 재건)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.147-161
    • /
    • 2021
  • Through photogrammetry techniques, what current researches can achieve at present is rough 3D mesh and color map of objects, rather than usable photo-realistic 3D assets. This research aims to propose a new method to create photo-realistic 3D assets that can be used in the field of visualization applications. The new method combines photogrammetry with computer graphics modeling. Through the description of the production process of three objects in the real world - "Bullet Box", "Gun" and "Metal Beverage Bottle," it introduces in details the concept, functions, operating skills and software packages used in the steps including the photograph object, white balance, reconstruction, cleanup reconstruction, retopology, UV unwrapping, projection, texture baking, De-Lighting and Create Material Maps. In order to increase the flexibility of the method, alternatives to the software packages are also recommended for each step. In this research, 3D assets are produced that are accurate in shape, correct in color, easy to render and can be physically interacted with dynamic lighting in texture. The new method can obtain more realistic visual effects at a faster speed. It does not require large-scale teams, expensive equipment and software packages, therefore it is suitable for small studios and independent artists and educational institutions.

Fundamental Matrix Estimation and Key Frame Selection for Full 3D Reconstruction Under Circular Motion (회전 영상에서 기본 행렬 추정 및 키 프레임 선택을 이용한 전방향 3차원 영상 재구성)

  • Kim, Sang-Hoon;Seo, Yung-Ho;Kim, Tae-Eun;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.10-23
    • /
    • 2009
  • The fundamental matrix and key frame selection are one of the most important techniques to recover full 3D reconstruction of objects from turntable sequences. This paper proposes a new algorithm that estimates a robust fundamental matrix for camera calibration from uncalibrated images taken under turn-table motion. Single axis turntable motion can be described in terms of its fixed entities. This provides new algorithms for computing the fundamental matrix. From the projective properties of the conics and fundamental matrix the Euclidean 3D coordinates of a point are obtained from geometric locus of the image points trajectories. Experimental results on real and virtual image sequences demonstrate good object reconstructions.

Registration for 3D Object Reconstruction from Multiple Range Images Considering Texture (텍스처를 고려한 다중 레인지 이미지의 3차원 형상 복원을 위한 정합)

  • 최가나;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.644-646
    • /
    • 1999
  • 본 논문은 한 물체에 대해 스캔 위치 정보가 없는 여러 시점의 레인지 이미지들로부터 3차원 형상 복원을 위한 정합 알고리즘을 제안한다. 기존의 정합 방법은 스캔 위치 정보와 기하학 정보를 이용하여 레인지 이미지들을 정렬시킨 반면, 본 논문의 정합 방법은 스캔 위치와는 독립적으로 수행되며 기하학 정보와 텍스쳐 정보를 함께 이용하여 정렬시킨다. 그러므로 텍스쳐가 있는 여러 장의 레인지 이미지들로부터 3차원 형상을 보다 정확하고 효율적으로 복원할 수 있다.

  • PDF

A Study on a 3D Modeling for surface Inspection of a Moving Object (비등속 이동물체의 표면 검사를 위한 3D 모델링 기술에 관한 연구)

  • Ye, Soo-Young;Yi, Young-Youl;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • We propose a 3D modeling method for surface inspection of non-constant velocity moving object. 1'lie laser lines reflect tile surface curvature. We can acquire 3D surface information by analyzing projected laser lines on object. In this paper, we use multi-line laser to improve the single stripe method and high speed of single frame. Binarization and edge extraction of frame image were proposed for robust laser each line extraction. A new labeling method was used for laser line labeling. We acquired some feature points for image matching from the frame data and juxtaposed the frames data to obtain a 3D shape image. We verified the superiority of proposed method by applying it to inspect container's damages.

  • PDF

A 3D Foot Scanner Using Mirrors and Single Camera (거울 및 단일 카메라를 이용한 3차원 발 스캐너)

  • Chung, Seong-Youb;Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • A structured beam laser is often used to scan object and make 3D model. Multiple cameras are inevitable to see occluded areas, which is the main reason of the high price of the scanner. In this paper, a low cost 3D foot scanner is developed using one camera and two mirrors. The camera and two mirrors are located below and above the foot, respectively. Occluded area, which is the top of the foot, is reflected by the mirrors. Then the camera measures 3D point data of the bottom and top of the foot at the same time. Then, the whole foot model is reconstructed after symmetrical transformation of the data reflected by mirrors. The reliability of the scan data depends on the accuracy of the parameters between the camera and the laser. A calibration method is also proposed and verified by experiments. The results of the experiments show that the worst errors of the system are 2 mm along x, y, and z directions.

The 3D Shape Reconstruction System Based on Active Stereo Matching (Active Stereo Matching 기반의 3차원 형상 재구성 시스템)

  • Byun, Ki-Won;Im, Jae-Uk;Kim, Dae-Dong;Nam, Ki-Gon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1003-1004
    • /
    • 2008
  • In this paper, we propose a 3D modeling method using Laser Slit Beam and Stereo Camera. We can get depth information of image by analyzing projected Laser Slit Beam on object. 3D modeling is demanded exquisite merge of 3D data. In our approach, we can get the depth image where the reliability is high. Each reconstructed 3D modeling is combined by the sink information which is acquired by SIFT (Scale Invariant Feature Transform) Algorithm. We perform experiments using indoor images. The results show that the proposed method works well in indoor environments

  • PDF

A Study on Random Reconstruction Method of 3-D Objects Based on Conditional Generative Adversarial Networks (cGANs) (cGANs(Conditional Generative Adversarial Networks) 기반 3차원 객체의 임의 재생 기법 연구)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.157-159
    • /
    • 2019
  • Hologram technology has been actively developed in terms of generation, transmission, and reproduction of 3D objects, but it is currently in a state of rest because of various limitations. Beyond VR and AR, the pseudo-hologram market is growing at an intermediate stage to meet the needs of new technologies. The key to the technology of hologram is to generate vast 3 dimensional data in the form of a point cloud, transmit the vast amount of data through the communication network in real time, and reproduce it like the original at the destination. In this paper, we propose a method to transmit massive 3 - D data in real - time and transmit the minutiae points of 3 - dimensional object information to reproduce the object as similar to original.

  • PDF

Correction of Missing Feature Points for 3D Modeling from 2D object images (2차원 객체 영상의 3차원 모델링을 위한 손실 특징점 보정)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2844-2851
    • /
    • 2015
  • How to recover from the multiple 2D images into 3D object has been widely studied in the field of computer vision. In order to improve the accuracy of the recovered 3D shape, it is more important that noise must be minimized and the number of image frames must be guaranteed. However, potential noise is implied when tracking feature points. And the number of image frames which is consisted of an observation matrix usually decrease because of tracking failure, occlusions, or low image resolution, and so on. Therefore, it is obviously essential that the number of image frames must be secured by recovering the missing feature points under noise. Thus, we propose the analytic approach which can control directly the error distance and orientation of missing feature point by the geometrical properties under noise distribution. The superiority of proposed method is demonstrated through experimental results for synthetic and real object.

Resolution in Optical Scanning Holography (광스캔닝 훌로그래피의 해상도)

  • Doh, Kyu Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

3D Surface Reconstruction by Combining Focus Measures through Genetic Algorithm (유전 알고리즘 기반의 초점 측도 조합을 이용한 3차원 표면 재구성 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • For the reconstruction of three-dimensional (3D) shape of microscopic objects through shape from focus (SFF) methods, usually a single focus measure operator is employed. However, it is difficult to compute accurate depth map using a single focus measure due to different textures, light conditions and arbitrary object surfaces. Moreover, real images with diverse types of illuminations and contrasts lead to the erroneous depth map estimation through a single focus measure. In order to get better focus measurements and depth map, we have combined focus measure operators by using genetic algorithm. The resultant focus measure is obtained by weighted sum of the output of various focus measure operators. Optimal weights are obtained using genetic algorithm. Finally, depth map is obtained from the refined focus volume. The performance of the developed method is then evaluated by using both the synthetic and real world image sequences. The experimental results show that the proposed method is more effective in computing accurate depth maps as compared to the existing SFF methods.