• Title/Summary/Keyword: 3D nonlinear analysis

검색결과 553건 처리시간 0.028초

철근콘크리트 연성 모멘트골조에 대한 반응수정계수와 비선형 변위량의 평가 (Estimation of Response Modification Factor and Nonlinear Displacement for Moment Resisting Reinforced Concrete Frames)

  • 김길환;전대한;이상호
    • 한국지진공학회논문집
    • /
    • 제6권2호
    • /
    • pp.29-37
    • /
    • 2002
  • 본 연구는 철근콘크리트 연성 모멘트골조의 선형.비선형 정적해석을 통한 반응수정계수와 비선형 변위량을 평가하여 합리적인 내진설계의 기초자료를 제공하는 것을 목적으로 한다. 먼저 국내 내진설계 규준에 따라 각 모델을 설계한 후, 철근콘크리트 연성 모멘트골조의 반응수정계수와 비선형 변위량을 평가하였으며, 해석에 사용된 모델은 층수(10, 20, 30), 평면비(1:1, 1:2), 해석방법(2D, 3D)을 변수로 한 27개의 모델이다. 반응수정계수와 비선형 변위량의 평가는 각 모델별 선형.비선형 정적해석을 수행하여 그 결과를 비교 분석하여 산정하였다. 반응수정계수는 강도계수, 연성계수, 잉여도계수, 감쇠계수의 곱으로 산정하였고, 그 결과 해석방향의 저항골조의 수에 따라 2 스팬인 경우 3.5, 3 스팬인 경우 4.3, 4 스팬 이상인 경우에는 평면비나 층수와 상관없이 5.0에 근접한 결과를 나타내었다. 비선형 변위량은 층간변위각비(비선형 변위각/선형 변위각)에 의해 평가되었으며, 층간변위각비는 5.85에서 9.34로 나타났다.

비내진 상세를 가진 1:5 축소 철근콘크리트 골조의 비선형 거동에 대한 실험과 해석의 상관성 연구 (A Study of Correlation between Experiment and Analysis of Nonlinear Behaviors of A 1:5 Scale RC Frame with Nonseismic Details)

  • 이한선;우성우;허윤섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.483-486
    • /
    • 1999
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete (RC) frame which was designed only for gravity loads. One of the major objectives of these experiments are to provide the calibration to the available static and dynamic inelastic techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF

Determination of strut efficiency factor for concrete deep beams with and without fibre

  • Sandeep, M.S.;Nagarajan, Praveen;Shashikala, A.P.;Habeeb, Shehin A.
    • Advances in Computational Design
    • /
    • 제1권3호
    • /
    • pp.253-264
    • /
    • 2016
  • Based on the variation of strain along the cross section, any region in a structural member can be classified into two regions namely, Bernoulli's region (B-region) and Disturbed region (D-region). Since the variation of strain along the cross section for a B-region is linear, well-developed theories are available for their analysis and design. On the other hand, the design of D-region is carried out based on thumb rules and past experience due to the presence of nonlinear strain distribution. Strut-and-Tie method is a novel approach that can be used for the analysis and design of both B-region as well as D-region with equal importance. The strut efficiency factor (${\beta}_s$) is needed for the design and analysis of concrete members using Strut and Tie method. In this paper, equations for finding ${\beta}_s$ for bottle shaped struts in concrete deep beams (a D-region) with and without steel fibres are developed. The effects of transverse reinforcement on ${\beta}_s$ are also considered. Numerical studies using commercially available finite element software along with limited amount of experimental studies were used to find ${\beta}_s$.

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

적층 쉘 요소를 이용한 용접 열탄소성 해석 (The Thermal Elasto-plastic Analysis Using Layered Shell Element)

  • 송하철;염재선;장창두
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.220-224
    • /
    • 2005
  • The thermal elasto-plastic analysis for the prediction of welding distortion of a 3 dimensional large-scaled ship structure is a very time-consuming work since the analysis is a nonlinear problem, and a lot of finite elements are needed to simulate the large ship hull block. Generally, 3-D finite elements have been used in the 3-D welding distortion problem to assess precisely the temperature gradient through the thickness direction of the welding plate. As a result of the adoption of 3-D element, degrees of freedom are rapidly increased in the problem to be solved. In this study, to improve the time efficiency of welding thermal elasto-plastic analysis, a layered shell element was proposed to simulate 3-D temperature gradient, and the results were compared with the experiment. The experiments were carried out for the type of bead-on-plate welding, and we found the measured data have a good agreement with the FEA results.

  • PDF

Stability Function을 이용한 공간 뼈대구조물의 기하학적 비선형해석 포뮬레이션 (Geometric Nonlinear Analysis Formulation for Spatial Frames using Stability Functions)

  • 윤영묵;박준우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.201-207
    • /
    • 1998
  • In this study, a geometric nonlinear analysis formulation for spatial frames is developed using the 3D stability functions. For the formulation, the relationships of local and global coordinate systems in force, deformation, and the initial and current configurations of a frame are derived. The force-deformation relationship in global coordinate system is derived as well. The developed formulation is verified in each derivation by reducing the derived equations into 2D equations. The gradual plastification of connections and critical sections can be implemented effectively to this formulation for the complete second order inelastic advanced analysis of spatial frames.

  • PDF

대뇌 백질 변성을 보인 환자에서의 뇌파와 인지기능의 변화 (Changes of Electroencephalography & Cognitive Function in Subjects with White Matter Degeneration)

  • 권도형;유성동;이애영
    • Annals of Clinical Neurophysiology
    • /
    • 제4권1호
    • /
    • pp.21-27
    • /
    • 2002
  • Background : Spatial analysis of EEG is a phenomenal assessment and not so informative for phase space and dynamic aspect of EEG data. In contrast, nonlinear EEG analysis attempts to characterize the dynamics of neural networks in the brain. We have analyzed the features of EEG nonlinearly in subjects with white matter change on brain MRI and compared the results with cognitive function in each. Methods : Digital EEG data were taken for 30 seconds in 9 subjects with white matter degeneration and in 5 healthy normal controls without white matter change on MRI. Then we analyzed them nonlinearly to calculate the correlation dimension(D2) using the MATLAB software. The cognitive function was assessed by 3MS(modified mini-mental state examination). The severity of white matter change was assessed by Scheltens scale. Results : The mean D2 value of normal control was greater than that of white matter degeneration group. The D2s of some channels were correlative with 3MS and degree of white matter degeneration significantly. Conclusions : nonlinear analysis of EEG can be used as one of adjuvant functional studies for prediction of cognitive impairment in subjects with white matter degeneration and subcortical white matter change can be influential on cognitive function and correlation dimension of EEG.

  • PDF

Estimation of the Ratio of Nonlinear Optical Tensor Components by Measuring Second Harmonic Generation and Parametric Down Conversion Outputs in a Single Periodically Poled LiNbO3 Crystal

  • Kumar, CH. S.S. Pavan;Kim, Jiung;Kim, Byoung Joo;Cha, Myoungsik
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.606-611
    • /
    • 2018
  • Measurement of the nonlinear optical coefficients is not an easy task since it requires complicated experimental setup and analysis. We suggest an easy way to estimate the relative nonlinear optical tensor components by direct measurement of the output powers of the second harmonic generation and spontaneous parametric down conversion experiments. The experiments were done in quasi-phase-matched type-0 as well as type-1 interactions at similar pump wavelengths in a 5% MgO-doped periodically poled $LiNbO_3$ crystal to obtain the ratio of the nonlinear optical tensor components $d_{33}/d_{31}$ in each experiment. The obtained ratios were then compared with the previously ascertained values [J. Opt. Soc. Am. B, 14, 2268-2294 (1997)].

CFD as a seakeeping tool for ship design

  • Kim, Sun-Geun Peter
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.65-71
    • /
    • 2011
  • Seakeeping analysis has progressed from the linear frequency-domain 2D strip method to the nonlinear timedomain 3D panel method. Nevertheless, the violent free surface flows such as slamming and green water on deck are beyond the scope of traditional panel methods based on potential theory. Recently, Computational Fluid Dynamics (CFD) has become an attractive numerical tool that can effectively deal with the violent free surface flows. ABS, as a classification society, is putting forth a significant amount of effort to implement the CFD technology to the advanced strength assessment of modern commercial ships and high-speed naval craft. The main objective of this study is to validate the CFD technology as a seakeeping tool for ship design considering fully nonlinear three-dimensional slamming and green water on deck. The structural loads on a large container carrier were successfully calculated from the CFD analysis and validated with segmented model test measurements.