• 제목/요약/키워드: 3D microfabrication

검색결과 18건 처리시간 0.026초

현상공정에서 표면장력에 의한 극미세 3 차원 구조물의 변형거동 분석 및 저감방안에 관한 연구 (Investigation into Deformation of Three-Dimensional Microstructures via Surface Tension of a Rinsing Material During a Developing Process)

  • 박상후;양동열
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.303-309
    • /
    • 2008
  • Dense and fine polymer patterns often collapse, as they come into contact with each other at their protruding tips. Resist pattern collapse depends on the aspect ratio of patterns and the surface tension of rinsing materials. The pattern collapse is a very serious problem in microfabrication, because it is one of the factors which limit the device dimensions. The reasons for the pattern collapse are known as the surface tension of rinse liquid, centrifugal force and rinse liquid flow produced in the developing process. In this work, we tried to evaluate the pattern collapse of three-dimensional microstructures that were fabricated by two-photon induced photopolymerization, and showed the way how to reduce the deformation of microstructures.

레이저묘화 기술을 이용한 3차원 미세구조물 제조 (Fabrication of three dimensional microstructures using laser direct writing technique)

  • 정성호;한성일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.670-673
    • /
    • 2003
  • Fabrication of three dimensional microstructures by laser-assisted chemical vapor deposition of material is investigated. To fabricate microstructures, a thin layer of deposit in desired patterns is first written using laser direct writing technique and on top of this layer a second layer is deposited to provide the third dimension normal to the surface. By depositing many layers. a three dimensional microstructure is fabricated. Optimum deposition conditions for direct writing of initial and subsequent layers with good surface quality and profile uniformity are determined. Using an arson ion laser and ethylene as the light source and reaction gas, respectively, fabrication of three-dimensional carbon microstructures is demonstrated.

  • PDF

다중조사 복셀 매트릭스 스캐닝법을 이용한 이광자 중합에 의한 마이크로 3차원 곡면형상 제작 (Fabrication of Three-Dimensional Curved Microstructures by Two-Photon Polymerization Employing Multi-Exposure Voxel Matrix Scanning Method)

  • 임태우;박상후;양동열;공홍진;이광섭
    • 폴리머
    • /
    • 제29권4호
    • /
    • pp.418-421
    • /
    • 2005
  • 본 연구에서는 나노/마이크로 소자 및 MEMS 제작에 활용가능하고 또한 수십 마이크로미터 크기의 3차원 곡면을 가진 형상을 제작하기 유리한 이광자 광중합을 이용한 다중조사 복셀 매트릭스 스캐닝법(multi-exposure voxel matrix scanning method)에 의한 나노 복화공정을 개발하였다. 이 공정을 통하여는 높이에 따라 14가지의 색을 가진 등고선으로 표현된 3차원 자유곡면 형상을 적층방식이 아닌 단일 층으로 3차원으로 제작할 수 있다. 여기서 수광각도가 1.25인 집광렌즈를 사용하여 레이저의 조사시간에 따라 1.2 um에서 6.4 um까지 변하는 복셀의 높이 차이를 이용하여 3차원 곡면 제작이 가능하다. 본 연구의 유용성을 검토하기 위하여 몇 가지 3차원 곡면형상을 초미세 입체 패터닝 공정에서 사용하는 일반적인 적층방식을 사용하지 않고 단층으로 제작하여 시간을 단축하였다.

Full 3D Level Set Simulation of Nanodot Fabrication using FIBs

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • 제25권5호
    • /
    • pp.98-102
    • /
    • 2016
  • The level set method has recently become popular in the simulation of semiconductor processes such as etching, deposition and photolithography, as it is a highly robust and accurate computational technique for tracking moving interfaces. In this research, full three-dimensional level set simulation has been developed for the investigation of focused ion beam processing. Especially, focused ion beam induced nanodot formation was investigated with the consideration of three-dimensional distribution of redeposition particles which were obtained by Monte-Carlo simulation. Experimental validations were carried out with the nanodots that were fabricated using focused $Ga^+$ beams on Silicon substrate. Detailed description of level set simulation and characteristics of nanodot formation will be discussed in detail as well as surface propagation under focused ion beam bombardment.

Lithographic Microfabrication for Nano/Micro-Objects by using Two-Photon Polymerization Technique

  • Lee, Kwang-Sup;Kang, Seung-Wan;Kim, Ran-Hee;Kim, Ju-Yeon;Kim, Won-Jin;Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Sun, Hong-Bo;Kawata, Satoshi
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.15-16
    • /
    • 2006
  • Since two-photon polymerization (TPP) emerged as a new technology over a decade ago, a large variety of micro-objects including 3-D micro-optical components, micromechanical devices, and 3-D photonic crystals have been fabricated using TPP with a high spatial resolution of approximately submicron scale to 100 nm. Recent efforts have been made to improve the fabrication efficiency and precision of micro-objects obtained with TPP; in particular, many studies have been carried out with the aim of developing efficient two-photon absorbing chromophores. In this presentation, we will discuss our efforts to develop highly efficient two-photon absorbing materials and also describe recent attempts to enhance the resolution and to improve the fabrication efficiency of nanofabrications based on TPP.

  • PDF

Microfabrication of Submicron-size Hole on the Silicon Substrate using ICP etching

  • Lee, J.W.;Kim, J.W.;Jung, M.Y.;Kim, D.W.;Park, S.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.79-79
    • /
    • 1999
  • The varous techniques for fabrication of si or metal tip as a field emission electron source have been reported due to great potential capabilities of flat panel display application. In this report, 240nm thermal oxide was initially grown at the p-type (100) (5-25 ohm-cm) 4 inch Si wafer and 310nm Si3N4 thin layer was deposited using low pressure chemical vapor deposition technique(LPCVD). The 2 micron size dot array was photolithographically patterned. The KOH anisotropic etching of the silicon substrate was utilized to provide V-groove formation. After formation of the V-groove shape, dry oxidation at 100$0^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have a etch-mask for dry etching. The thicknesses of the grown oxides on the (111) surface and on the (100) etch stop surface were found to be ~330nm and ~90nm, respectively. The reactive ion etching by 100 watt, 9 mtorr, 40 sccm Cl2 feed gas using inductively coupled plasma (ICP) system was performed in order to etch ~90nm SiO layer on the bottom of the etch stop and to etch the Si layer on the bottom. The 300 watt RF power was connected to the substrate in order to supply ~(-500)eV. The negative ion energy would enhance the directional anisotropic etching of the Cl2 RIE. After etching, remaining thickness of the oxide on the (111) was measured to be ~130nm by scanning electron microscopy.

  • PDF

Trends in the development of human stem cell-based non-animal drug testing models

  • Lee, Su-Jin;Lee, Hyang-Ae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.441-452
    • /
    • 2020
  • In vivo animal models are limited in their ability to mimic the extremely complex systems of the human body, and there is increasing disquiet about the ethics of animal research. Many authorities in different geographical areas are considering implementing a ban on animal testing, including testing for cosmetics and pharmaceuticals. Therefore, there is a need for research into systems that can replicate the responses of laboratory animals and simulate environments similar to the human body in a laboratory. An in vitro two-dimensional cell culture model is widely used, because such a system is relatively inexpensive, easy to implement, and can gather considerable amounts of reference data. However, these models lack a real physiological extracellular environment. Recent advances in stem cell biology, tissue engineering, and microfabrication techniques have facilitated the development of various 3D cell culture models. These include multicellular spheroids, organoids, and organs-on-chips, each of which has its own advantages and limitations. Organoids are organ-specific cell clusters created by aggregating cells derived from pluripotent, adult, and cancer stem cells. Patient-derived organoids can be used as models of human disease in a culture dish. Biomimetic organ chips are models that replicate the physiological and mechanical functions of human organs. Many organoids and organ-on-a-chips have been developed for drug screening and testing, so competition for patents between countries is also intensifying. We analyzed the scientific and technological trends underlying these cutting-edge models, which are developed for use as non-animal models for testing safety and efficacy at the nonclinical stages of drug development.