• Title/Summary/Keyword: 3D mechanical model

Search Result 1,127, Processing Time 0.032 seconds

A Study on Joining of 3D Thermoset and Biodegradable Polymers (열경화성 3D 프린트 몰드와 생분해성 소재 접합에 관한 연구)

  • Yoon, Sung Chul;Ma, Jae Kwon;Bang, Dae Wook;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.20-25
    • /
    • 2014
  • Laser heat source was applied on 3D poly urethane model built by 3D printer and cellulous acetate for joining. A diode laser with 808nm wavelength was transmitted through the 3D model and applied on the boundary of ABS/Acetate and 3D poly urethane model. Based on the experimental result, the ABS and 3D built poly-urethane polymers was successfully joined, but the mechanical strength was not enough at the joining boundaries in the range of 6watt to 8watt of laser heat source. However, biodegradable acetate was successfully joined without damaging the 3D built model and mechanical strength was properly achieved. The optimum laser power was found between 5watt and 8watt with scanning speed of 500mm/min, 700mm/min and 1,000mm/min. Based on the SEM analysis the filling mechanism was that the applied pressure on 3D built model squeezed the fluidic thermoplastics, ABS and acetate, into the structure of 3D model. Therefore soundness of joining was strongly depending on the viscosity of thermoplastics in polymers. The developed laser process is expected to increase productivity and minimize the cost for the final products.

Evaluation of the Tribological Parameters of Three-dimensional Surface Topography with Various Property

  • Uchidate, M.;Shimizu, T.;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.249-250
    • /
    • 2002
  • In this paper, the relationship among the 3-D surface topography parameters are studied. Several surface topography parameters that are important in tribology are calculated against various surface topography data. 3-D surface data with desired properties are generated by using the non-causal 2-D auto-regressive (AR) model. The non-causal 2-D AR model is a random 3-D surface topography model that can generate 3-D surface topography data with specified parameters.

  • PDF

Pressure Analysis of the Plantar Musculoskeletal Fascia Using a Fine Finite-Element Model (인체 족부 근골격계 상세 유한요소모델링을 통한 족저압 해석)

  • Jeon, Seong-Mo;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1237-1242
    • /
    • 2011
  • The A detailed 3D finite-element analysis model of a human foot has been developed by converting CT scan images to 3D CAD models in order to analyze the distribution of plantar pressure. The 3D foot model includes all muscles, bones, and skin. On the basis of this model and the pressure distribution results, shoes for diabetes patients, which can make the plantar pressure distribution uniform, may be designed through finite-element contact analysis.

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

Development of a System that Translates Spec-catalog Data for Plant Equipment Considering Holes and Nozzles (홀과 노즐을 고려한 플랜트 기기 스펙-카탈로그 데이터 번역 시스템 개발)

  • Lee, Hyunoh;Kwon, Hyeokjun;Lee, Gwang;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.59-70
    • /
    • 2020
  • Three-dimensional (3D) design data is used for various purposes throughout the life cycle of a plant construction project. Plant 3D CAD systems support 3D modeling based on specs-catalogs, which contain data that are used for different purposes such as design, procurement, production, and handover. Therefore, it is important to share the spec-catalog data in the 3D design model with other application systems. Sharing this data thus requires a system that extracts spec-catalog data from plant 3D CAD systems and converts them into neutral model data. In this paper, we analyze equipment spec-catalog data of plant 3D CAD systems and, based on these analyses, define the data structure for neutral spec-catalog data. We subsequently propose a procedure that translates native spec-catalog data to neutral model data and develop a prototype system that performs this operation. The proposed method is then experimentally validated for the test spec-catalog data.

Development of a Similarity Evaluation System for Offshore Plants' 3D Piping CAD Models Created Using Aveva Marine and SmartMarine 3D (Aveva Marine과 SmartMarine 3D 간의 해양 플랜트 3D 배관 CAD 모델 유사도 평가 시스템 개발)

  • Lee, Jaesun;Kim, Byung Chul;Kim, Hyungki;Cheon, Sanguk;Cho, Mincheol;Lee, Gwang;Kim, Jin-Hyun;Mun, Duhwan;Han, Soonhung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.397-406
    • /
    • 2016
  • Diverse stakeholders engaged in design, construction, and operation and maintenance of offshore plants typically operate heterogeneous plant 3D CAD systems. Engineering, procurement, and construction (EPC) companies are required to submit plant design result to the owner in the form of a plant 3D CAD model, as specified in the contract. However, because of the limitations of data interface of plant 3D CAD systems, EPC companies frequently perform manual remodeling to fulfill the terms and conditions of the contract. Therefore, comparison should be performed between the source plant 3D CAD model and the remodeled plant 3D CAD model to prove the validity of the remodeled plant 3D CAD model. To automate the comparison process, we have developed a system for quantitatively assessing the similarity of the plant 3D CAD models. This paper presents the architecture and detailed functions of the system. In addition, experimental results using this system are explained.

Simplification of a Feature-based 3D CAD Assembly Model Considering the Allowable Highest and Lowest Limits of the LOD (허용 가능한 LOD의 상하한을 고려한 특징형상 3D CAD 조립체 모델의 단순화)

  • Yu, Eun-seop;Lee, Hyunoh;Kwon, Soonjo;Lee, Jeong-youl;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.22-34
    • /
    • 2020
  • Three-dimensional (3D) computer-aided design (CAD) models require different levels of detail (LODs) depending on their purpose. Therefore, it is beneficial to automatically simplify 3D CAD assembly models to meet the desired LOD. Feature-based 3D CAD assembly models typically have the lowest and highest feasible limits of LOD during simplification. In order to help users obtain a feasible simplification result, we propose a method to simplify feature-based 3D CAD assembly models by determining the lowest and highest limits of LOD. The proposed method is verified through experiments using a simplification prototype implemented as a plug-in type module on Siemens NX.

Improvement of the Representative Volume Element Method for 3-D Scaffold Simulation

  • Cheng Lv-Sha;Kang Hyun-Wook;Cho Dong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1722-1729
    • /
    • 2006
  • Predicting the mechanical properties of the 3-D scaffold using finite element method (FEM) simulation is important to the practical application of tissue engineering. However, the porous structure of the scaffold complicates computer simulations, and calculating scaffold models at the pore level is time-consuming. In some cases, the demands of the procedure are too high for a computer to run the standard code. To address this problem, the representative volume element (RVE) theory was introduced, but studies on RVE modeling applied to the 3-D scaffold model have not been focused. In this paper, we propose an improved FEM-based RVE modeling strategy to better predict the mechanical properties of the scaffold prior to fabrication. To improve the precision of RVE modeling, we evaluated various RVE models of newly designed 3-D scaffolds using FEM simulation. The scaffolds were then constructed using microstereolithography technology, and their mechanical properties were measured for comparison.