• Title/Summary/Keyword: 3D map building

Search Result 155, Processing Time 0.024 seconds

Considerations for Developing a SLAM System for Real-time Remote Scanning of Building Facilities (건축물 실시간 원격 스캔을 위한 SLAM 시스템 개발 시 고려사항)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In managing building facilities, spatial information is the basic data for decision making. However, the method of acquiring spatial information is not easy. In many cases, the site and drawings are often different due to changes in facilities and time after construction. In this case, the site data should be scanned to obtain spatial information. The scan data actually contains spatial information, which is a great help in making space related decisions. However, to obtain scan data, an expensive LiDAR (Light Detection and Ranging) device must be purchased, and special software for processing data obtained from the device must be available.Recently, SLAM (Simultaneous localization and mapping), an advanced map generation technology, has been spreading in the field of robotics. Using SLAM, 3D spatial information can be obtained quickly in real time without a separate matching process. This study develops and tests whether SLAM technology can be used to obtain spatial information for facility management. This draws considerations for developing a SLAM device for real-time remote scanning for facility management. However, this study focuses on the system development method that acquires spatial information necessary for facility management through SLAM technology. To this end, we develop a prototype, analyze the pros and cons, and then suggest considerations for developing a SLAM system.

A Study on the Establishment of a Production Pipeline Imported 3D Computer Graphics for Clay Characters (3D 컴퓨터그래픽을 도입한 클레이 캐릭터 제작 공정 개발에 관한 연구)

  • Kim, Jung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1245-1257
    • /
    • 2008
  • The establishment of a production pipeline imported 30 computer graphics is suggested in this paper to improve the efficiency of existing production pipeline of clay animation. The point is that the process of building clay characters that remains labor intensive among the existing procedures is replaced by the process of creating computer generated characters. In order to create characters out of clay by means of 30 computer graphics, a diffuse map and displacement map are made of an oil-based clay according to the UVW coordination of polygon modeling, which is the same color and kind of clay used to make a clay character. In addition, a panoramic HDRI recording system is developed to record the lighting information of shooting environment for miniature sets, which is imported in 3D computer graphic tools as digital light source. On account of the new production pipeline, a hyper realistic rendering image can be produced, and at the same time it improves the traditional pipeline of stop motion animation that is know-how based procedure of a complete artist by the engineering approach to the automatic process.

  • PDF

Visual Mapping from Spatiotemporal Table Information to 3-Dimensional Map (시-공간 도표정보의 3차원 지도 기반 가시화기법)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • Information visualization, generally speaking, consists of three steps: transform from raw data to data model, visual mapping from data model to visual structure, and transform from visual structure to information model. In this paper, we propose a visual mapping method from spatiotemporal table information, which is related to events in large-scale building, to 3D map metaphor. The process has also three steps as follows. First, after analyzing the table attributes, we carefully define a context to fully represent the table-information. Second, we choose meaningful attribute sets from the context. Third, each meaningful attribute set is mapped to one well defined visual structure. Our method has several advantages. First, users can intuitively achieve non-spatial information through the 3D map which is a powerful spatial metaphor. Second, this system shows various visual mapping method applicable to other data models in the form of table, especially GIS. After describing the whole concept of our visual mapping, we will show the results of implementation for several requests.

  • PDF

Correction of Geometric Distortion of Internet Aerial Imagery and Photo-Realistic 3D Building Modeling (인터넷 항공영상의 왜곡보정과 실감적 3차원 건물 모델링)

  • Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.687-695
    • /
    • 2011
  • Many internet portals provide maps with spatial information services. Recently, various images including aerial, satellite, street view, and photo-realistic 3D city models are provided as well as maps. This study suggested a method for geometric correction of the panoramic aerial images in the internet portal and 3D building modeling using information which is available in the internet. The key of this study is to obtain all necessary data easily from internet without restrictions. Practically, the ground control coordinates could be available from geo-referenced internet maps, and stereo pairs of the aerial images and close-range photographs for photo-realistic object modeling are provided by the internet service. However, the ground control points are not suitable for accurate mapping. RMSE of the plotting was about 9 meters and reduced upto 4 meters after coordinate transformation. The proposed methods would be applicable to various applications of photo-realistic object modeling which do not require high accuracy.

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design (캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구)

  • Lee, Dong Myung
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.

City-Scale Modeling for Street Navigation

  • Huang, Fay;Klette, Reinhard
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.411-419
    • /
    • 2012
  • This paper proposes a semi-automatic image-based approach for 3-dimensional (3D) modeling of buildings along streets. Image-based urban 3D modeling techniques are typically based on the use of aerial and ground-level images. The aerial image of the relevant area is extracted from publically available sources in Google Maps by stitching together different patches of the map. Panoramic images are common for ground-level recording because they have advantages for 3D modeling. A panoramic video recorder is used in the proposed approach for recording sequences of ground-level spherical panoramic images. The proposed approach has two advantages. First, detected camera trajectories are more accurate and stable (compared to methods using multi-view planar images only) due to the use of spherical panoramic images. Second, we extract the texture of a facade of a building from a single panoramic image. Thus, there is no need to deal with color blending problems that typically occur when using overlapping textures.

Extracting 3D Geospatial Information Using SPOT 5 HRG Stereo Imagery (SPOT 5 HRG 스테레오 영상을 이용한 3차원 지형정보 추출)

  • Lee Jin-Duk;Jeong Tae-Sik;Yeon Sang-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.335-339
    • /
    • 2005
  • Digital elevation models(DEM) were generated from SPOT-5 HRG supermode imagery through photogrammetric processing. The reference DEMs were obtained from digital topographic maps of 1/5000 scaleas for analyzing the accuracy of the generated DEMs. The DEMs extracted from HRG stereo image data were compared with digital topograpic map DEMs on several test sections. And digital surface models(DSM) and 3D building model was produced.

  • PDF

Image-based Localization Recognition System for Indoor Autonomous Navigation (실내 자율 비행을 위한 영상 기반의 위치 인식 시스템)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • Recently, the localization recognition system research has been studied using various sensors according to increased interest in autonomous navigation flight. In case of indoor environment which cannot support GPS information, we have to look for another way to recognize current position. The Image-based localization recognition system has been interested although there are lots of way to know current pose. In this paper, we explain the localization recognition system based on mark and implementation of autonomous navigation flight. In order to apply to real environment which cannot support marks, localization based on real-time 3D map building is discussed.

Analysis of Daylight Availability Rights using 3D City-Model (3차원 도시모델을 이용한 건물 일조권 분석)

  • Yoo, Hwan-Hee;Goo, Sin-Hoi;Cho, Eun-Rae;Kim, Seong-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.165-175
    • /
    • 2007
  • Nowadays, architecture in urban areas is dominated by the goal of spanning wide spaces and creating openings large enough to distribute daylight to building interiors. Daylight availability of building in city strongly depends not only on the building's height but also on spaces between buildings. Recently numbers of disputes over the daylight availability are increasing in high density developed areas because residents' demand for pleasant residential environment is getting stronger. Therefore in this study we constructed the three-dimensional information of buildings using LiDAR data connected with digital map and then suggested conclusions by applying it to daylight availability analysis. This study presents an approach to judge accurately the violation of a right to enjoy sunshine by using altitude and azimuths of the sun, simulating three-dimensional urban space precisely, and classifying the total duration of sunshine and the continuous duration of sunshine each householder. We expect that local government performs precisely the confirmation and permission business about urban planning and design by advising this approach.