• Title/Summary/Keyword: 3D manufacturing

Search Result 1,975, Processing Time 0.033 seconds

Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods

  • Kim, Soaram;Park, Hyunggil;Nam, Giwoong;Yoon, Hyunsik;Kim, Jong Su;Kim, Jin Soo;Son, Jeong-Sik;Lee, Sang-Heon;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3335-3339
    • /
    • 2013
  • Boron-doped ZnO (BZO) nanorods were grown on quartz substrates using hydrothermal synthesis, and the temperature-dependence of their photoluminescence (PL) was measured in order to investigate the origins of their PL properties. In the UV range, near-band-edge emission (NBE) was observed from 3.1 to 3.4 eV; this was attributed to various transitions including recombination of free excitons and their longitudinal optical (LO) phonon replicas, and donor-acceptor pair (DAP) recombination, depending on the local lattice configuration and the presence of defects. At a temperature of 12 K, the NBE produces seven peaks at 3.386, 3.368, 3.337, 3.296, 3.258, 3.184, and 3.106 eV. These peaks are, respectively, assigned to free excitons (FX), neutral-donor bound excitons ($D^{\circ}X$), and the first LO phonon replicas of $D^{\circ}X$, DAP, DAP-1LO, DAP-2LO, and DAP-3LO. The peak position of the FX and DAP were also fitted to Varshni's empirical formula for the variation in the band gap energy with temperature. The activation energy of FX was about ~70 meV, while that of DAP was about ~38 meV. We also discuss the low temperature PL near 2.251 eV, related to structural defects.

The Economic Inducement Effects of Aviation Industry using Input-Output Model (투입산출모형을 통한 항공산업의 경제적 파급효과 분석)

  • Lee, Young-Soo;Yeo, Kyu-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.3
    • /
    • pp.50-57
    • /
    • 2008
  • This paper analyse the economic inducement effects of aviation industry using Input-Output Model. For measuring economic inducement effects of aviation industry on korean economy, this paper divides air transport industry as two - manufacturing industry and service industry. we also use Input-Output Table of year 1990 through 2003 from Bank of Korea. Empirical results tells that aviation manufacturing industry have high product inducement effects to national economy although its low value-added coefficient such as 0.486 for aviation manufacturing industry and 0.447 for aviation service industry. public R&D doesn't have much effect to each of aviation industries.

  • PDF

A Study on Fabrication of 3D Porous Scaffold Combined with Polymer Deposition System and a Salt Leaching Method (폴리머 적층 시스템과 염 침출법을 결합한 3차원 다공성 인공지지체 제작)

  • Shim, Hae-Ri;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.86-92
    • /
    • 2016
  • In this study, we used a polymer deposition system, based on fused deposition modeling, to fabricate the 3D scaffold and then fabricated micro-pores on a 3D scaffold using a salt leaching method. Materials included polycaprolactone (PCL) and sodium chloride (NaCl). The 3D porous scaffolds were fabricated according to blending ratio such as PCL (70 wt%)/NaCl (30 wt%) and PCL (50 wt%)/NaCl (50 wt%). The 3D porous scaffolds were observed by scanning electron microscopy. The results showed that 3D porous scaffolds had a deposition width of $500{\mu}m$, contained a pore size of $500{\mu}m$ and below $100{\mu}m$. To evaluate the 3D porous scaffolds for bone tissue engineering, we carried out the cell proliferation experiment using a CCK-8 and a mechanical strength test using a universal testing machine. In summary, the 3D porous scaffold was found to be suitable for cancellous bone of human in accordance with the result of in-vitro cell proliferation and mechanical strength. Thus, a 3D porous scaffold could be a promising approach for effective bone regeneration.

A Study on Injection Mold Design Using Topology Optimization (위상최적화 기법을 이용한 사출 금형 최적 설계)

  • Kim, Mi-Jin;Choi, Jae-Hyuk;Baek, Gyeng-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.100-106
    • /
    • 2022
  • Topology optimization is applied for the optimal design of various products to ensure weight reduction and productivity improvement. Reducing the weight of the mold while maintaining its rigidity can ensure shortening of the production cycle, stabilization of the mold temperature, and reduction of mold material costs. In this study, a topology optimization technique was applied to the optimal design of the injection mold, and a topology-optimized model of the mold was obtained. First, the injection mold for the square specimens was modeled. Subsequently, a structural analysis was performed by implementing a load condition generated during the injection molding process. Topology optimization was performed based on the structural analysis results, and the models of the initial and topology-optimized designs were manufactured at 1/4 magnification using a 3D printer. Consequently, compared with the existing model, the weight of the topology-optimized model decreased by 9.8%, and the manufacturing time decreased by 7.61%.

Parametric Modeling of the Digital Virtual Factory using Object-Oriented Methods (객체지향 모델을 이용한 디지털 가상공장의 파라메트릭 모델링에 관한 연구)

  • Yoon Tae-Hyuck;Noh Sang-Do
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.982-986
    • /
    • 2005
  • Digital Manufacturing is a technology to facilitate effective product developments and agile productions by digital environments representing the physical and logical schema and the behavior of real manufacturing system including manufacturing resources, processes and products. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we constructed a sophisticated digital virtual factory by measuring and 3-D CAD modeling using parametric methods. Specific parameters of each objects were decided by object-oriented schema of the digital factory. It is expected that this method is very useful for constructions of a digital factory, and helps to manage diverse information and re-use 3D models.

  • PDF

Structural Modeling and Characteristic Analysis of Container Handling System (컨테이너 적재 시스템의 구조 모델링 및 특성 해석)

  • Kim, Young-Sang;Maeng, Hee-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • A CHS(Container Handling System) is a system to load and to unload ISO 2000 or ISO 4000 standard containers which is widely used for various industrial transport purpose. A new light type of CHS is introduced in this paper, in order to reduce weight of cargos and to give the convenience in cargo loading and unloading without additional lifting equipments. The structural models of this system are created to assemble the smooth integration of system and to interface the each composing units with the specification of truck chassis to be mounted. These models are applied to find the suitable design parameters under the condition of force restrictions of each units. Finally, the stability of this system are investigated by analyzing the dynamic simulation using Visual NASTRAN 4D, and it could be recommend the good design parameters for the manufacturing purpose.

Development of Microchip Removal Equipment Using Neodymium Permanent Magnets (네오디뮴 영구자석을 이용한 미세칩 제거장치의 개발)

  • Choi, Sung-Yun;Wang, Jun-hyeong;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2021
  • Machining operations require removal of chips to keep the coolant clean and fresh throughout the operation time. In this study, microchip removal equipment was developed using AutoCAD and CATIA programs for 3D modeling and 2D draft. In addition, the flow analysis and electromagnetic field analysis of the equipment were performed using the COMSOL Multiphysics program. The flow design of the coolant oil tank was realized on the basis of fluid analysis results. Further, on the basis of magnetic density analysis, a conveyer was designed for effectively removing metal microchips in the tank by using arrays of neodymium permanent magnets.

In situ monitoring-based feature extraction for metal additive manufacturing products warpage prediction

  • Lee, Jungeon;Baek, Adrian M. Chung;Kim, Namhun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.767-775
    • /
    • 2022
  • Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, produces 3D metal products by repeatedly adding and solidifying metal materials layer by layer. During the metal AM process, products experience repeated local melting and cooling using a laser or electron beam, resulting in product defects, such as warpage, cracks, and internal pores. Such defects adversely affect the final product. This paper proposes the in situ monitoring-based warpage prediction of metal AM products with experimental feature extraction. The temperature profile of the metal AM substrate during the process was experimentally collected. Time-domain features were extracted from the temperature profile, and their relationships to the warpage mechanism were investigated. The standard deviation showed a significant linear correlation with warpage. The findings from this study are expected to contribute to optimizing process parameters for metal AM warpage reduction.

Accuracy of CAD-CAM RPD framework according to manufacturing method: A literature review (국소의치 구조물(framework)의 CAD-CAM 제조방식에 따른 정확도: 문헌고찰)

  • Yi, Yuseung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.3
    • /
    • pp.370-378
    • /
    • 2021
  • Purpose. The purpose of this study was to evaluate the currently published literatures investigating the accuracy of computer-aided design and computer-aided manufacturing removable partial denture (CAD-CAM RPD) framework with different manufacturing techniques and methods. Materials and methods. A comprehensive search for literatures was conducted in PubMed database using specific keywords with the patient, intervention, comparison, and outcome (PICO) question, "Is there a difference in accuracy of RPD frameworks manufactured using digital workflow according to the manufacturing process and methods?" Results. A total of 7 articles were selected. Two studies compared intraoral scanning and laboratory scanning for RPD frameworks and had heterogenous results. In the studies using different manufacturing process, RPD frameworks had clinically acceptable accuracy in both subtractive and additive manufacturing. Polyetheretherketone (PEEK)-milled RPD frameworks showed higher fit accuracy than traditionally casted or 3D printed RPDs. Direct milling method showed a higher accuracy than indirect milling method. However, in rapid prototyping, indirect method showed higher accuracy than direct method. Conclusion. The RPD frameworks fabricated using CAD-CAM technology showed a clinically acceptable level of accuracy regardless of manufacturing process or techniques. Consistent results have not been reported regarding the digital impression methods, which were intra oral scanning or laboratory scanning, and further studies are needed.

Development of a 3D Graphic Simulator for Assembling Robot (조립용 로봇이 3차원 그래픽 시뮬레이터 개발)

  • 장영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.227-232
    • /
    • 1998
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF