• 제목/요약/키워드: 3D ground modeling

Search Result 157, Processing Time 0.027 seconds

Soil Volume Computation Technique at Slope Failure Using Photogrammetric Information (영상정보를 활용한 사면 붕괴 토사량 산정 기법)

  • Bibek, Tamang;Lim, Hyuntaek;Jin, Jihuan;Jang, Sukhyun;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The uses of unmanned aerial vehicles (UAV) have been expanding in agriculture surveys, obtaining real time updates of dangerous facilities where human access is difficult, disaster monitoring, and 3D modeling. In reality, there is an upsurge in the application of UAVs in fields like, construction, infrastructure, imaging, surveying, surveillance and transportation. Especially, when the slope failure such as landslide occurs, the uses of UAVs are increasing. Since, the UAVs can fly in three dimensions, they are able to obtain spatial data in places where human access is nearly impossible. Despite of these advantages, however, the uses of UAVs are still limited during slope failure. In order to overcome these limitations, this study computes the soil volume change during slope failure through the computation technique using photogrammetric information obtained from UAV system. Through this study, it was found that photogrammetric information from UAV can be used to acquire information on amount of earthworks required for repair works when slope collapse occurs in mountainous areas, where human access in difficult.

Qualitative Verification of the LAMP Hail Prediction Using Surface and Radar Data (지상과 레이더 자료를 이용한 LAMP 우박 예측 성능의 정성적 검증)

  • Lee, Jae-yong;Lee, Seung-Jae;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • Ice and water droplets rise and fall above the freezing altitude under the effects of strong updrafts and downdrafts, grow into hail, and then fall to the ground in the form of balls or irregular lumps of ice. Although such hail, which occurs in a local area within a short period of time, causes great damage to the agricultural and forestry sector, there is a paucity of domestic research toward predicting hail. The objective of this study was to introduce Land-Atmosphere Modeling Package (LAMP) hail prediction and measure its performance for 50 hail events that occurred from January 2020 to July 2021. In the study period, the frequency of occurrence was high during the spring and during afternoon hours. The average duration of hail was 15 min, and the average diameter of the hail was 1 cm. The results showed that LAMP predicted hail events with a detection rate of 70%. The hail prediction performance of LAMP deteriorated as the hail prediction time increased. The radar reflectivity of actual cases of hail indicated that the average maximum reflectivity was greater than 40 dBZ regardless of altitude. Approximately 50% of the hail events occurred when the reflectivity ranged from 30~50 dBZ. These results can be used to improve the hail prediction performance of LAMP in the future. Improved hail prediction performance through LAMP should lead to reduced economic losses caused by hail in the agricultural and forestry sector through preemptive measures such as net coverings.

Variation of Earth Pressure Acting on the Cut-and-Cover Tunnel Lining due to Geotextile Mat Reinforcement (지오텍스타일 매트의 설치에 의한 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista, F.E.;Park, Lee-Keun;Im, Jong-Chul;Joo, In-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.25-40
    • /
    • 2007
  • Excessive earth pressure is one of the major mechanical factors in the deformation and damage of Cut-and-Cover Tunnel lining in shallow tunnels and portals of mountain tunnels (Kim, 2000). Excessive earth pressure may be attributed to insufficient compaction and consolidation of backfill material due to self-weight, precipitation and vibration caused by traffic (Komiya et al., 2000; Taylor et al., 1984; Yoo, 1997). Even though there were a lot of tests performed to determine the earth pressure acting on the tunnel lining, unfortunately there were almost no case histories of studies performed to determine remedial measures that reduce differential settlement and excessive earth pressure. In this study the installation of geotextile mat was selected to reduce the differential settlement and excessive earth pressure acting on the cut-and-cover tunnel lining. In order to determine settlement and earth pressure reduction effect (reinforcement effect) of geotextile mat reinforcement, laboratory tunnel model tests were performed. This study was limited to the modeling of rigid circular cut-and-cover tunnel constructed at a depth of $1.0D\sim1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. Model tests with varying soil cover, mat reinforcement scheme and slope roughness were performed to determine the most effective mat reinforcement scheme. Slope roughness was adjusted by attaching sandpaper #100, #400 and acetate on the cut slope surface. Mat reinforcement effect of each mat reinforcement scheme were presented by the comparison of earth pressure obtained from the unreinforced and mat reinforced model tests. Soil settlement reduction was analyzed and presented using the Picture Analysis Method (Park, 2003).

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

Impedance Calculation of Power Distribution Networks for High-Speed DRAM Module Design (고속DRAM모듈 설계에 대한 전원평면의 임피던스계산)

  • Lee, Dong-Ju;Younggap You
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.49-60
    • /
    • 2002
  • A systematic design approach for Power distribution network (PDN) is presented aiming at applications to DRAM module designs. Three main stages are comprised in this design approach: modeling and simulation of a PDN based on a two-dimensional transmission line structure employing a partial element equivalent circuit (PEEC); verification of the simulation results through comparison to measured values; and design space scanning with PDN parameters. Impedance characteristics for do-coupling capacitors are analyzed to devise an effective way to stabilize power and ground plane Performance within a target level of disturbances. Self-impedance and transfer-impedance are studied in terms of distance between circuit features and the size of do-coupling capacitors. A simple equation has been derived to find the do-coupling capacitance values yielding impedance lower than design target, and thereby reducing the overall computation time. The effectiveness of the design methodology has been demonstrated using a DRAM module with discrete do-coupling capacitors and a strip structure.

Optimal Design of an Auto-Leg System for Washing Machines (세탁기용 자동신통저감장치($Auto-Leg^{TM}$)의 최적 설계)

  • Seo, H.S.;Lee, T.H.;Jeon, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.996-1001
    • /
    • 2006
  • Automatic washing machines have been improved and popularized steadily since the first electric washing machine was produced in the early 1900's. Appliance industry has tried to obtain the performance of washing machine with large capacity, high energy efficiency, low vibration and low noise levels. As the installation peace of a washer becomes closer to the living space, vibration and noise problems become more important challenges. In general, a washing machine has four legs to support its body. Four legs of the washing machine should be attached on a floor. If not so, it may cause severe vibration or walking in the spin-drying process. Unfortunately, the floor of an ordinary house is bumpy in general, and the consumers will not accept bolting washing machines to a foundation; moreover, sometimes they move the location of their washing machines to utility rooms or bath rooms or kitchens and don't care for leveling the legs exactly. In this study, we devise an auto-leg system that prevents the occurrence of abnormal vibration and walking of washing machines. It is simply composed of a spring and a friction damper. Some experiments are implemented to show the dynamic characteristics of the three-dimensional auto-legged washing machine model that is located on the even or uneven ground. A spring parameter is optimized to adjust the length of the auto-leg system automatically up to 10 mm irregularity, and the friction damper is designed to decrease a resonance induced by the spring of the auto-leg system. Some numerical results show that placing the proposed auto-leg system in a washing machine makes good performance with low vibration, as well as low noise, regardless of the unevenness of the floor.

  • PDF

Priority for the Investment of Artificial Rainfall Fusion Technology (인공강우 융합기술 개발을 위한 R&D 투자 우선순위 도출)

  • Lim, Jong Yeon;Kim, KwangHoon;Won, DongKyu;Yeo, Woon-Dong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.261-274
    • /
    • 2019
  • This paper aims to develop an appropriate methodology for establishing an investment strategy for 'demonstration of artificial rainfall technology using UAV' and that include establishment of a technology classification, set of indicators for technology evaluation, suggestion of final key technology as a whole study area. It is designed to complement the latest research trend analysis results and expert committee opinions using quantitative analysis. The key indicators for technology evaluation consisted of three major items (activity, technology, marketability) and 10 detailed indicators. The AHP questionnaire was conducted to analyze the importance of indicators. As a result, it was analyzed that the attribute of the technology itself is most important, and the order of closeness to the implementation of the core function (centrality), feasibility (feasibility). Among the 16 technology groups, top investment priority groups were analyzed as ground seeding, artificial rainfall verification, spreading and diffusion of seeding material, artificial rainfall numerical modeling, and UAV sensor technology.

Composite model for seawater intrusion in groundwater and soil salinization due to sea level rise (해수면 상승으로 인한 지하수 해수침투 및 토양 염류화 합성 평가모델)

  • Jung, Euntae;Park, Namsik;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.387-395
    • /
    • 2017
  • Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

A Study for the Applicable Bearing-Resistance of Bearing Anchor in the Enlarged-Borehole (지압형 앵커의 지압력 산정에 관한 실험적 연구)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Jung, Chan-Muk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.261-271
    • /
    • 2014
  • An almost permanent anchor (friction type) is resistant to ground deformation due to the friction between the soil and grout at a fixed length from the anchor body. The purpose of this study is to calculate the force of bearing resistance for a bearing anchor in enlarged boreholes. We conducted analytical and numerical analyses, along with laboratory testing, to find the quantities of bearing resistance prior to grouting in EBA (Enlarged Bearing Anchor) construction. The force of bearing resistance from the analytical method was defined as a function of general borehole diameter, expanded borehole diameter, and soil unconfined compressive strength. We also employed the Flac 3D finite difference numerical modeling code to analyze the bearing resistance of the soil conditions. We then created a laboratory experimental model to measure bearing resistance and carried out a pull-out test. The results of these three analyses are presented here, and a regression analysis was performed between bearing resistance and uniaxial compression strength. The laboratory results yield the strongest bearing resistance, with reinforcement 28.5 times greater than the uniaxial compression strength; the analytical and numerical analyses yielded values of 13.3 and 9.9, respectively. This results means that bearing resistance of laboratory test appears to be affected by skin friction resistance. To improve the reliability of these results, a comparison field study is needed to verify which results (analytical, numerical, or laboratory) best represent field observations.