Impedance Calculation of Power Distribution Networks for High-Speed DRAM Module Design

고속DRAM모듈 설계에 대한 전원평면의 임피던스계산

  • Lee, Dong-Ju (Chungbuk National University) ;
  • Younggap You (Dept. of Computer and Communication Eng. Chungbuk National University)
  • Published : 2002.03.01

Abstract

A systematic design approach for Power distribution network (PDN) is presented aiming at applications to DRAM module designs. Three main stages are comprised in this design approach: modeling and simulation of a PDN based on a two-dimensional transmission line structure employing a partial element equivalent circuit (PEEC); verification of the simulation results through comparison to measured values; and design space scanning with PDN parameters. Impedance characteristics for do-coupling capacitors are analyzed to devise an effective way to stabilize power and ground plane Performance within a target level of disturbances. Self-impedance and transfer-impedance are studied in terms of distance between circuit features and the size of do-coupling capacitors. A simple equation has been derived to find the do-coupling capacitance values yielding impedance lower than design target, and thereby reducing the overall computation time. The effectiveness of the design methodology has been demonstrated using a DRAM module with discrete do-coupling capacitors and a strip structure.

본 논문에서는 DRAM 모듈의 전원 평면에 대한 효과적인 설계 방법을 제시하였고 그 방법은 다음과 같이 세 단계로 구성되어 있다. 1) PEEC 등가회로를 이용한 2D 전송선 구조로 전원평면의 모델링 및 해석. 2) 측정값 비교를 통한 해석 결과 검증. 3) 전원 평면의 물리적 파라미터를 이용한 설계 가이드 제시. 제시한 내용을 바탕으로 하여 DRAM 모듈에서 전원 및 접지평면 성능을 안정화를 이루기 위한 효과적인 De-coupling 커패시터의 용량과 개수를 결정하는 방법을 기술하였다 이 설계 방법론은 스트립 구조 및 do-coupling 커패시터를 갖는 DRAM 모듈에서 효과적으로 사용할 수 있다.

Keywords

References

  1. B. Young, Digital Signal Integrity, Modeling and Simulation with Interconnects and Packages, Prentice-Hall, 2000
  2. N. J. Na, et al., 'Modeling and transient simulation of planes in electronic packages,' IEEE Trans. on Advanced Packaging, Vol. 23, No. 3. pp. 340-352, August 2000 https://doi.org/10.1109/6040.861546
  3. E.D. Alvarez, J.P. Krusius and Kroeger, 'Modeling and simulation of integrated capacitors for high frequency chip power decoupling,' IEEE Trans. on Components and Packaging Tech, Vol. 23, No. 4, December 2000 https://doi.org/10.1109/6144.888843
  4. I. Novak, 'Lossy power distribution network with thin dielectric layers and/or thin conductive layers,' IEEE Trans. on Advanced Packaging, Vol. 23, No. 3, pp. 353-360, August 2000 https://doi.org/10.1109/6040.861547
  5. L.D. Smith, et al., T. R, 'Power distribution system design methodology and capacitor selection for modern CMOS technology,' IEEE Trans. on Advanced Packaging, Vol. 22, No. 3, pp. 284-291, August 1999 https://doi.org/10.1109/6040.784476
  6. L.D. Smith, R. Anderson and T. Roy, 'Power plane SPICE models and simulated performance for materials and geometries,' IEEE Trans. on Advanced Packaging, Vol. 24, No. 3, pp. 277-287, August 2001 https://doi.org/10.1109/6040.938294
  7. J.H. Kim and M. Swaminathan, 'Modeling of irregular shaped power distribution planes using transmission matrix method,' IEEE Trans. on Advanced Packaging, Vol. 24, No. 3, pp. 334-346, August 2001 https://doi.org/10.1109/6040.938301