• Title/Summary/Keyword: 3D graphic processor

Search Result 33, Processing Time 0.026 seconds

Performance Study of Multicore Digital Signal Processor Architectures (멀티코어 디지털 신호처리 프로세서의 성능 연구)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.171-177
    • /
    • 2013
  • Due to the demand for high speed 3D graphic rendering, video file format conversion, compression, encryption and decryption technologies, the importance of digital signal processor system is growing rapidly. In order to satisfy the real-time constraints, high performance digital signal processor is required. Therefore, as in general purpose computer systems, digital signal processor should be designed as multicore architecture as well. Using UTDSP benchmarks as input, the trace-driven simulation has been performed and analyzed for the 2 to 16-core digital signal processor architectures with the cores from simple RISC to in-order and out-of-order superscalar processors for the various window sizes, extensively.

A Design on Rasterizer for the verification in a 3D Graphic Processor (3D 그래픽 프로세서 검증을 위한 래스터라이저 설계)

  • Lee, Mi-Kyoung;Jang, Young Jo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.639-642
    • /
    • 2009
  • When the graphics accelerator for high-quality multimedia content design, hardware verification environment, easy and accurate performance evaluation in an embedded device is required. To work around this is not verified through the simulation waveform analysis to determine the actual calculated graphic images has designed a software rasterizer. Rasterizer is designed for Windows-based environment using the C language implementation of rasterization has a function at each step. Vertex data is entered and the results were verified.

  • PDF

A Study on the 3 Dimension Graphics Accelerator for Phong Shading Algorithm (Phong Shading 알고리즘을 적용한 3차원 영상을 위한 고속 그래픽스 가속기 연구)

  • Park, Youn-Ok;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.97-103
    • /
    • 2010
  • There are many algorithms for 2D to 3D graphic conversion technology which have the high complexity and large scale of iterative computation. So in this paper propose parallel algorithm and high speed graphics accelerator architecture using Park's MAMS(Multiple Access Memory System) for Phong Shading, one of many 3D algorithms. The Proposed SIMD processor architecture is simulated by HDL and simulated and got 30 times faster result. It means any kinds of 3D algorithm can make parallel algorithm and accelerated by SIMD processor with Park's MAMS for real time processing.

A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates (3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF

Design of Compiler & Variable-Length Instructions for SIMD Structured Shader (가변길이 SIMD구조 쉐이더 명령어 및 컴파일러 설계)

  • Kwak, Jae-Chang;Park, Tae-Ryoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2691-2697
    • /
    • 2010
  • Shader instructions and Compiler are designed for supporting 3D graphic shader 3.0 API. Variable-length instructions are proposed to reduce the size of hardware of graphic processor in SIMD structure by shortening the length of instructions. The designed shader compiler supports variable and two phased structured instructions, and can be programmable at ESSL level. Conformance Test proposed by Khronos group is accomplished to verify the design result of instructions and complier. The test result shows overall average 37% performance improvement at the 16 functions of basic GL shader.

Design of a Variable-Length Instruction for the Effective Usability Instruction in 3D Graphics Processor (3D 그래픽 프로세서에서 효율적인 명령어를 위한 가변길이 명령어 설계)

  • Kim, Woo-Young;Lee, Bo-Haeng;Lee, Kwang-Yeob;Kwak, Jae-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • Recently, Khronos institude OpenGL ES 2.0 API for support Shader 3.0 model that can possible variable graphic processing. For this reason, the mobile device have need of supporting processor for a shader 3.0 model. We should extend instruction's length to support OpenGL ES 2.0 API, so we need more memory size. In this paper, we propose a new instruction form that adopted variable length and unit instruction architecture. This proposed instruction architecture that support to Shader 3.0 model has consist of 32bit unit instructions up to 4 which can be combined for embellishing each other. Therefore, it can execute flexible instruction combination and reduce waste of instruction fields.

  • PDF

A Design of a Verification System for a 3D Graphic Geometry Engine (3D 그래픽 가속기를 위한 검증시스템의 설계 및 구현)

  • Song, In-Seok;Ha, Jin-Seok;Kim, Myung-Hwan;Lee, Kwang-Yeob;Jo, Tae-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.663-666
    • /
    • 2005
  • The geometry stage, which performs the transformation and lighting operations of vertices, became the critical part in 3D graphics pipeline. In this paper, we have planned and designed the Geometry Processor for the better and more efficient way to process the real-time 3D using the floating point unit. We also designed a verification system for Geometry engine. It is implemented with Xilinx-Virtex2 and Visual C++.NET. In the Synopsis, we confirmed 100 MHz performance and 137107 cell area of Geometry Engine.

  • PDF

A 3D graphic pipelines with an efficient clipping algorithm (효율적인 클리핑 기능을 갖는 3차원 그래픽 파이프라인 구조)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.61-66
    • /
    • 2008
  • Recently, portable devices which require small area and low power consumption employ applications using 3D graphics such as 3D games and 3D graphical user interfaces. We propose an efficient clipping engine algorithm which is suitable in 3D graphics pipeline. The clipping operation is divided into two steps: one is the selection process in the transformation engine and the other is the pixel clipping process in the scan conversion unit. The clipping operation is possible with addition of simple comparator. The clipping for the Y-axis is achieved in the edge walk stage and that for the X and Z-axis is performed in the span processing. The proposed clipping algorithm reduces the operation cycles and the area of of 3D graphics pipelines. We designed a 3D graphics pipeline with the proposed clipping algorithm using Verilog-HDL and verifies the operation using an FPGA.

Simulator of Integrated Single-Wafer Processing Tools with Contingency Handling (예외상황 처리를 고려한 반도체 통합제조장비 시뮬레이터)

  • Kim Woo Seok;Jeon Young Ha;Lee Doo Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.96-106
    • /
    • 2005
  • An integrated single-wafer processing tool, composed of multiple single wafer processing modules, transfer robots, and load locks, has complex routing sequences, and often has critical post-processing residency constraints. Scheduling of these tools is an intricate problem, and testing schedulers with actual tools requires too much time and cost. The Single Wafer Processor (SWP) simulator presented in this paper is to validate an on-line scheduler, and evaluate performance of integrated single-wafer processing tools before the scheduler is actually deployed into real systems. The data transfer between the scheduler and the simulator is carried out with TCP/IP communication using messages and files. The developed simulator consists of six modules, i.e., GUI (Graphic User Interface), emulators, execution system, module managers, analyzer, and 3D animator. The overall framework is built using Microsoft Visual C++, and the animator is embodied using OpenGL API (Application Programming Interface).

A Design of Low-power/Small-area Divider and Square-Root Circuits based on Logarithm Number System (로그수체계 기반의 저전력/저면적 제산기 및 제곱근기 회로 설계)

  • Kim, Chay-Hyeun;Kim, Jong-Hwan;Lee, Yong-Hwan;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.895-898
    • /
    • 2005
  • This paper describes a design of LNS-based divider and square-root circuits which are key arithmetic units in graphic processor and digital signal processor. To achive area-efficient and low-power that is an essential consideration for mobile environment, a fixed-point format of 16.16 is adopted instead of conventional floating-point format. The designed divider and square-root units consist of binary-to-logarithm converter, subtractor, logarithm-to-binary converter. The binary to logarithm converter is designed using combinational logic based on six regions approximation method. As a result, gate count reduction is obtained when compared with conventional lookup approack. The designed units is 3,130 gate count and 1,280 gate count. To minimize average percent error 3.8% and 4.2%. error compensation method is employed.

  • PDF