• Title/Summary/Keyword: 3D gesture recognition technology

Search Result 38, Processing Time 0.024 seconds

Design and Development of Virtual Reality Exergame using Smart mat and Camera Sensor (스마트매트와 카메라 센서를 이용한 가상현실 체험형 운동게임 시스템 설계 및 구현)

  • Seo, Duck Hee;Park, Kyung Shin;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2297-2304
    • /
    • 2016
  • In this study, we designed and developed the virtual reality Exergame using the smart mat and the camera sensor for exercises in indoor environments. For detecting the gestures of a upper body of users, the KINECT camera based the gesture recognition algorithm used angles between user's joint information system was adopted, and the smart mat system including a LED equipment and Bluetooth communication module was developed for user's stepping data during the exercises that requires the gestures and stepping of users. Finally, the integrated virtual reality Exergame system was implement along with the Unity 3D engine and different kinds of user' virtual avatar characters with entertainment game contents such as displaying gesture guideline and a scoring function. Therefore, the designed system will useful for elders who need to improve cognitive ability and sense of balance or general users want to improve exercise ability and the indoor circumstances such home or wellness centers.

Dynamic Hand Gesture Recognition Using a CNN Model with 3D Receptive Fields (3 차원 수용영역 구조의 CNN 모델을 이용한 동적 수신호 인식 기법)

  • Park, Jin-Hee;Lee, Joseph S.;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.459-462
    • /
    • 2007
  • 본 연구에서는 동적 수신호 인식문제를 위하여 CNN 모델을 사용한 특징추출 기법과, FMM 신경망을 사용한 특징 분석 기법을 상호 결합한 형태의 패턴 인식 모델을 제안한다. 수신호 인식을 위하여 영상패턴에서 대상물의 움직임 정보에 기초한 3 차원 형식의 데이터 표현 기법과, 이로부터 인식을 위한 특징추출 기법을 제시한다. 특징추출 모듈에서는 3 차원으로 확장된 구조의 수용영역을 고려한 CNN 모델을 제안하며, 이로부터 학습패턴에서 특징점의 공간적 변이에 대한 영향을 최소화할 수 있음을 고찰한다. 또한 인식효율의 개선을 위하여 방대한 양의 특징집합으로부터 효과적인 특징을 선별하기 위한 방법론으로서 WFMM 모델 기반의 특징분석 기법을 정의하고 이로부터 선별된 특징을 사용하는 인식 기법을 소개한다.

Gesture Control Gaming for Motoric Post-Stroke Rehabilitation

  • Andi Bese Firdausiah Mansur
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.37-43
    • /
    • 2023
  • The hospital situation, timing, and patient restrictions have become obstacles to an optimum therapy session. The crowdedness of the hospital might lead to a tight schedule and a shorter period of therapy. This condition might strike a post-stroke patient in a dilemma where they need regular treatment to recover their nervous system. In this work, we propose an in-house and uncomplex serious game system that can be used for physical therapy. The Kinect camera is used to capture the depth image stream of a human skeleton. Afterwards, the user might use their hand gesture to control the game. Voice recognition is deployed to ease them with play. Users must complete the given challenge to obtain a more significant outcome from this therapy system. Subjects will use their upper limb and hands to capture the 3D objects with different speeds and positions. The more substantial challenge, speed, and location will be increased and random. Each delegated entity will raise the scores. Afterwards, the scores will be further evaluated to correlate with therapy progress. Users are delighted with the system and eager to use it as their daily exercise. The experimental studies show a comparison between score and difficulty that represent characteristics of user and game. Users tend to quickly adapt to easy and medium levels, while high level requires better focus and proper synchronization between hand and eye to capture the 3D objects. The statistical analysis with a confidence rate(α:0.05) of the usability test shows that the proposed gaming is accessible, even without specialized training. It is not only for therapy but also for fitness because it can be used for body exercise. The result of the experiment is very satisfying. Most users enjoy and familiarize themselves quickly. The evaluation study demonstrates user satisfaction and perception during testing. Future work of the proposed serious game might involve haptic devices to stimulate their physical sensation.

Study on Hand Gestures Recognition Algorithm of Millimeter Wave (밀리미터파의 손동작 인식 알고리즘에 관한 연구)

  • Nam, Myung Woo;Hong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.685-691
    • /
    • 2020
  • In this study, an algorithm that recognizes numbers from 0 to 9 was developed using the data obtained after tracking hand movements using the echo signal of a millimeter-wave radar sensor at 77 GHz. The echo signals obtained from the radar sensor by detecting the motion of a hand gesture revealed a cluster of irregular dots due to the difference in scattering cross-sectional area. A valid center point was obtained from them by applying a K-Means algorithm using 3D coordinate values. In addition, the obtained center points were connected to produce a numeric image. The recognition rate was compared by inputting the obtained image and an image similar to human handwriting by applying the smoothing technique to a CNN (Convolutional Neural Network) model trained with MNIST (Modified National Institute of Standards and Technology database). The experiment was conducted in two ways. First, in the recognition experiments using images with and without smoothing, average recognition rates of 77.0% and 81.0% were obtained, respectively. In the experiment of the CNN model with augmentation of learning data, a recognition rate of 97.5% and 99.0% on average was obtained in the recognition experiment using the image with and without smoothing technique, respectively. This study can be applied to various non-contact recognition technologies using radar sensors.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

Emotional Interface Technologies for Service Robot (서비스 로봇을 위한 감성인터페이스 기술)

  • Yang, Hyun-Seung;Seo, Yong-Ho;Jeong, Il-Woong;Han, Tae-Woo;Rho, Dong-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.58-65
    • /
    • 2006
  • The emotional interface is essential technology for the robot to provide the proper service to the user. In this research, we developed emotional components for the service robot such as a neural network based facial expression recognizer, emotion expression technologies based on 3D graphical face expression and joints movements, considering a user's reaction, behavior selection technology for emotion expression. We used our humanoid robots, AMI and AMIET as the test-beds of our emotional interface. We researched on the emotional interaction between a service robot and a user by integrating the developed technologies. Emotional interface technology for the service robot, enhance the performance of friendly interaction to the service robot, to increase the diversity of the service and the value-added of the robot for human. and it elevates the market growth and also contribute to the popularization of the robot. The emotional interface technology can enhance the performance of friendly interaction of the service robot. This technology can also increase the diversity of the service and the value-added of the robot for human. and it can elevate the market growth and also contribute to the popularization of the robot.

  • PDF

Point Cloud Content in Form of Interactive Holograms (포인트 클라우드 형태의 인터랙티브 홀로그램 콘텐츠)

  • Kim, Dong-Hyun;Kim, Sang-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.40-47
    • /
    • 2012
  • Existing art, media art, accompanied by a new path of awareness and perception instrumentalized by the human body, creating a new way to watch the interaction is proposed. Western art way to create visual images of the point cloud that represented a form that is similar to the Pointage. This traditional painting techniques using digital technology means reconfiguration. In this paper, a new appreciation of fusion of aesthetic elements and digital technology, making the point cloud in the form of video. And this holographic film projection of the spectator, and gestures to interact with the video content is presented. A Process of making contents is intent planning, content creation, content production point cloud in the form of image, 3D gestures for interaction design process, go through the process of holographic film projection. Visual and experiential content of memory recall process takes place in the consciousness of the people expressed. Complete the process of memory recall, uncertain memories, memories materialized, recalled. Uncertain remember the vague shapes of the point cloud in the form of an image represented by the image. As embodied memories through the act of interaction to manipulate images recall is complete.

Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition (손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.341-346
    • /
    • 2009
  • The motion data glove is a representative human-computer interaction tool that inputs human hand gestures to computers by measuring their motions. The motion data glove is essential equipment used for new computer technologiesincluding home automation, virtual reality, biometrics, motion capture. For its popular usage, this paper attempts to develop an inexpensive visual.type motion data glove that can be used without any special equipment. The proposed approach has the special feature; it can be developed as a low-cost one becauseof not using high-cost motion-sensing fibers that were used in the conventional approaches. That makes its easy production and popular use possible. This approach adopts a visual method that is obtained by improving conventional optic motion capture technology, instead of mechanical method using motion-sensing fibers. Compared to conventional visual methods, the proposed method has the following advantages and originalities Firstly, conventional visual methods use many cameras and equipments to reconstruct 3D pose with eliminating occlusions But the proposed method adopts a mono vision approachthat makes simple and low cost equipments possible. Secondly, conventional mono vision methods have difficulty in reconstructing 3D pose of occluded parts in images because they have weak points about occlusions. But the proposed approach can reconstruct occluded parts in images by using originally designed thin-bar-shaped optic indicators. Thirdly, many cases of conventional methods use nonlinear numerical computation image analysis algorithm, so they have inconvenience about their initialization and computation times. But the proposed method improves these inconveniences by using a closed-form image analysis algorithm that is obtained from original formulation. Fourthly, many cases of conventional closed-form algorithms use approximations in their formulations processes, so they have disadvantages of low accuracy and confined applications due to singularities. But the proposed method improves these disadvantages by original formulation techniques where a closed-form algorithm is derived by using exponential-form twist coordinates, instead of using approximations or local parameterizations such as Euler angels.