• Title/Summary/Keyword: 3D digital image

Search Result 851, Processing Time 0.027 seconds

3D Image Analysis for Digital Restoration and Structural Stability Evaluation of Stone Cultural Heritage: Five-storied Magoksa Temple Stone Pagoda (석조문화재 디지털복원 및 구조안정성 평가를 위한 3차원 영상분석: 마곡사오층석탑)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2009
  • This study was focused on digital restoration and structural stability evaluation applying 3D scanning system of five-storied Magoksa temple stone pagoda in Gongju. For these, the digital restoration of the pagoda was completed using laser scan data which is measured 16 directions and data processing program of 7 stages. As a result of digital restoration, the overall height and width of stone properties showed a little difference in directions and the width of roof stones appeared very high difference of each floor. The width of pagoda body become smaller to the fifth floor, but gradual decrease rate showed irregular characteristics. Also, as result of 3D image analysis for structural stability evaluation, the displacement occurred toward northwest in second body stone to upper final stone except for central axis of the first body stone which inclines toward southwest. Such 3D image analysis is required quantification of survey method and should be applied to various field such as quantitative damage maps in order to utilize a conservation of stone cultural heritages, continuously.

  • PDF

Method for 3D Visualization of Sound Data (사운드 데이터의 3D 시각화 방법)

  • Ko, Jae-Hyuk
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.331-337
    • /
    • 2016
  • The purpose of this study is to provide a method to visualize the sound data to the three-dimensional image. The visualization of the sound data is performed according to the algorithm set after production of the text-based script that form the channel range of the sound data. The algorithm consists of a total of five levels, including setting sound channel range, setting picture frame for sound visualization, setting 3D image unit's property, extracting channel range of sound data and sound visualization, 3D visualization is performed with at least an operation signal input by the input device such as a mouse. With the sound files with the amount an animator can not finish in the normal way, 3D visualization method proposed in this study was highlighted that the low-cost, highly efficient way to produce creative artistic image by comparing the working time the animator with a study presented method and time for work. Future research will be the real-time visualization method of the sound data in a way that is going through a rendering process in the game engine.

Specification and Implementation of Projective Texturing Node in X3D

  • Kim, In-Kwon;Jang, Ho-Wook;Yoo, Kwan-Hee;Ha, Jong-Sung
    • International Journal of Contents
    • /
    • v.12 no.2
    • /
    • pp.1-5
    • /
    • 2016
  • Extensible 3D (X3D) is the ISO standard for defining 3D interactive web- and broadcast-based 3D content integrated with multimedia. With the advent of this integration of interactive 3D graphics into the web, users can easily produce 3D scenes within web contents. Even though there are diverse texture nodes in X3D, projective textures are not provided. We enable X3D to provide SingularProjectiveTexture and MultiProjectiveTexture nodes by materializing independent nodes of projector nodes for a singular projector and multi-projector. Our approach takes the creation of an independent projective texture node instead of Kamburelis's method, which requires inconvenient and duplicated specifications of two nodes, ImageTexture and Texture Coordinate.

Server and Client Simulator for Web-based 3D Image Communication

  • Ko, Jung-Hwan;Lee, Sang-Tae;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.38-44
    • /
    • 2004
  • In this paper, a server and client simulator for the web-based multi-view 3D image communication system is implemented by using the IEEE 1394 digital cameras, Intel Xeon server computer and Microsoft's DirectShow programming library. In the proposed system, two-view image is initially captured by using the IEEE 1394 stereo camera and then, this data is compressed through extraction of its disparity information in the Intel Xeon server computer and transmitted to the client system, in which multi-view images are generated through the intermediate views reconstruction method and finally display on the 3D display monitor. Through some experiments it is found that the proposed system can display 8-view image having a grey level of 8 bits with a frame rate of 15 fps.

A Study on the Photo-realistic 3D City Modeling Using the Omnidirectional Image and Digital Maps (전 방향 이미지와 디지털 맵을 활용한 3차원 실사 도시모델 생성 기법 연구)

  • Kim, Hyungki;Kang, Yuna;Han, Soonhung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.253-262
    • /
    • 2014
  • 3D city model, which consisted of the 3D building models and their geospatial position and orientation, is becoming a valuable resource in virtual reality, navigation systems, civil engineering, etc. The purpose of this research is to propose the new framework to generate the 3D city model that satisfies visual and physical requirements in ground oriented simulation system. At the same time, the framework should meet the demand of the automatic creation and cost-effectiveness, which facilitates the usability of the proposed approach. To do that, I suggest the framework that leverages the mobile mapping system which automatically gathers high resolution images and supplement sensor information like position and direction of the image. And to resolve the problem from the sensor noise and a large number of the occlusions, the fusion of digital map data will be used. This paper describes the overall framework with major process and the recommended or demanded techniques for each processing step.

A Study on the Kinematic Surveying Method Using the Digital Video Recorder (디지털 비디오 리코더에 의한 이동 측량 기법 연구)

  • 함창학;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • This study recorded an object using a digital video recorder, and then tried to estimate 3-D positional information and to reconstruct an image. Firstly, the accuracy of measurement results from a video recorder was evaluated and tested for an applicability, then it applied to a real object to construct 3-D digital model. This study assumed that there is no lens distortion in a video recorder, and all bundles should precisely pass through the projection center of a lens. The image size for orientations is determined by the size of CCD chip and the number of pixels. The average squared error from the result by a digital video recorder and that by triangular survey from 1-second theodolite shows 0.0173m error in x,y coordinates. Without knowing the accurate information on the lens distortion and the coordinates of the projection center, this study reasonably produces acceptable results in the reconstruction of 3-D model. In consequence, this study found that the image from a digital video camera can be reconstructed 3-D model only from the information on a camera type.

A Research of Real-time Rendering Potentials on 3D Animation Production

  • Ke Ma;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.293-299
    • /
    • 2023
  • In recent years, with the rapid development of real-time rendering technology, the quality of the images produced by real-time rendering has been improving, and its application scope has been expanded from games to animation and advertising and other fields. This paper analyses the development status of real-time rendering technology in 3D animation by investigating the 3D animation market in China, which concludes that the number of 3D animations in China has been increasing over the past 20 years, and the number of 3D animations using real-time rendering has been increasing year by year and exceeds that of 3D animations using offline rendering. In this study, a real-time rendering and offline rendering 3D animation are selected respectively to observe the screen effect of characters, special effects and environment props, and analyse the advantages and disadvantages of the two rendering technologies, and finally conclude that there is not much difference between real-time rendering 3D animation and offline rendering 3D animation in terms of quality and the overall sense of view, and due to the real-time rendering of the characteristics of the WYSIWYG, the animation designers can better focus on the creation of art performance. Real-time rendering technology has a good development prospect and potential in 3D animation, which paves the way for designers to create 3D content more efficiently.

GeoMaTree : Geometric and Mathematical Model Based Digital Tree Authoring System

  • Jung, Seowon;Kim, Daeyeoul;Kim, Jinmo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3284-3306
    • /
    • 2018
  • This study proposes a method to develop an authoring system(GeoMaTree) for diverse trees that constitute a virtual landscape. The GeoMaTree system enables the simple, intuitive production of an efficient structure, and supports real-time processing. The core of the proposed system is a procedural modeling based on a mathematical model and an application that supports digital content creation on diverse platforms. The procedural modeling allows users to control the complex pattern of branch propagation through an intuitive process. The application is a multi-resolution 3D model that supports appropriate optimization for a tree structure. The application and a compatible function, with commercial tools for supporting the creation of realistic synthetic images and virtual landscapes, are implemented, and the proposed system is applied to a variety of 3D image content.

From Exoscope into the Next Generation

  • Nishiyama, Kenichi
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.3
    • /
    • pp.289-293
    • /
    • 2017
  • An exoscope, high-definition video telescope operating monitor system to perform microsurgery has recently been proposed an alternative to the operating microscope. It enables surgeons to complete the operation assistance by visualizing magnified images on a display. The strong points of exoscope are the wide field of view and deep focus. It minimized the need for repositioning and refocusing during the procedure. On the other hand, limitation of magnifying object was an emphasizing weak point. The procedures are performed under 2D motion images with a visual perception through dynamic cue and stereoscopically viewing corresponding to the motion parallax. Nevertheless, stereopsis is required to improve hand and eye coordination for high precision works. Consequently novel 3D high-definition operating scopes with various mechanical designs have been developed according to recent high-tech innovations in a digital surgical technology. It will set the stage for the next generation in digital image based neurosurgery.

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.