• Title/Summary/Keyword: 3D cell culture system

Search Result 110, Processing Time 0.03 seconds

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

Development of the Three-Dimensional Perfusion Culture Technology for the Salivary Ductal Cells (타액선 도관세포의 관류 배양 기술 개발)

  • Kim, Ji Won;Kim, Jeong Mi;Choi, Jeong-Seok
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.160-166
    • /
    • 2018
  • Background and objectives: Salivary hypofunction is one of the common side effects after radioiodine therapy, and its pathophysiology is salivary ductal stenosis resulting from ductal cell injury. This study aimed to develop the functional culture environment of human parotid gland ductal cells in in vitro three-dimensional perfusion culture system. Materials and Methods: We compared plastic dish culture method and three-dimensional culture system containing Matrigel and nanofiber. Morphogenesis of reconstituted salivary structures was assessed by histomorphometry. Functional characteristics were assessed by immunohistochemistry and reverse transcription polymerase chain reaction (aquaporin 5, CK7, CK18, connexin 43, and p21). In addition, we designed the media perfusion culture system and identified higher rate of cell proliferation and expression of connexin 43 in perfusion system comparing to dish. Results: Human parotid ductal cells were well proliferated with the ductal cell characters under environment with Matrigel. In the presence of Matrigel, aquaporin 5, CK18 and connexin 43 were more expressed than 2D dish and 3D nanofiber setting. In the media perfusion culture system, ductal cells in 3D culture media showed higher cells count and connexin 43 expression compared to 2D dish. Conclusion: This in vitro ductal cell perfusion culture system using Matrigel could be used to study for radioiodine induced sialadenitis model in vivo.

Ovarian cell aggregate culture in teleost, marine medaka (Oryzias dancena): basic culture conditions and characterization

  • Jae Hoon, Choi;Seung Pyo Gong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.19-30
    • /
    • 2024
  • Background: Although an understanding of the proliferation and differentiation of fish female germline stem cells (GSCs) is very important, an appropriate threedimensional (3D) research model to study them is not well established. As a part of the development of stable 3D culture system for fish female GSCs, we conducted this study to establish a 3D aggregate culture system of ovarian cells in marine medaka, Oryzias dancena. Methods: Ovarian cells were separated by Percoll density gradient centrifugation and two different cell populations were cultured in suspension to form ovarian cell aggregates to find suitable cell populations for its formation. Ovarian cell aggregates formed from different cell populations were evaluated by histology and gene expression analyses. To evaluate the media supplements, ovarian cell aggregate culture was performed under different media conditions, and the morphology, viability, size, gene expression, histology, and E2 secretion of ovarian cell aggregates were analyzed. Results: Ovarian cell aggregates were able to be formed well under specific culture conditions that used ultra-low attachment 96 well plate, complete mESM2, and the cell populations from top to 50% layers after separation of ovarian cells. Moreover, they were able to maintain minimal ovarian function such as germ cell maintenance and E2 synthesis for a short period. Conclusions: We established basic conditions for the culture of O. dancena ovarian cell aggregates. Additional efforts will be required to further optimize the culture conditions so that the ovarian cell aggregates can retain the improved ovarian functions for a longer period of time.

Analysis of Plasminogen Activators Activity and Three Dimensional (3D) Culture of Endometrial Cells in Pigs (돼지 자궁내막 세포의 3차원 배양과 Plasminogen Activator 활성화 분석)

  • Cha, Hye-Jin;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.273-280
    • /
    • 2013
  • The aim of this study was to establish a three dimensional (3D) culture system of endometrial cells and to examine the plasminogen activators (PAs) activity in porcine uterine. The 3D culture system in porcine endometrial cells was composed to mixture 3D gel, stromal cells and epithelial cells. The 3D culture system was used to identify normal structure search as uterine tissue and PAs expression in this study. In results, porcine endometrium epithelial cells forming a top monolayer and endometrium stromal cells developed as fibroblast-like within 3D matrix scaffold. Expression of urokinase-type PA (uPA) and tissue-type PA (tPA) were observed during the 3D culture using immunofluorescence. PA activity in 3D-cultured endometrial cells was no significant difference between the tissue type, but 2D culture system were significantly lower than in 3D-cultured endometrial cells (P<0.05). Therefore, basic system and functional aspect of 3D culture could be established with similar system of endometrium tissue. We suggest that this study was assumed applicable as baseline data to investigate mechanism between porcine uterus cells in vitro.

The Effects of Cesium, Strontium and Cobalt on Cell Toxicity in the 2D and 3D Cell Culture Platforms (단층 및 입체 세포배양환경에서 세슘, 스트론튬 및 코발트가 세포 독성에 미치는 영향 분석)

  • Kim, Gi Yong;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • Currently, there are 442 operating nuclear power plants in the world, and 62 more are under construction. According to this reasoning, the treatment of radioactive waste is important to prevent the environmental ecosystem including humans, animals, and plants. Especially, a leakage of radioactive waste causes not only regional problem but also serious global one. In this study, we demonstrate the effect of radioisotopes (e.g., cesium, strontium, and cobalt) on a 3D culture cell. To develop the 3D cell culture system, we used a 96-well-culture plate with biocompatible agarose hydrogel. Using this method, we can perform the 3D cell culture system with three different cell lines such as HeLa, HepG2, and COS-7. In addition, we conducted a cell viability test in the presence of radioisotopes. Interestingly, the 3D morphological cells showed 42% higher cell viability than those on the 2D against cesium. This result indicates that the 3D platform provides cells morphological and physiological characteristic similar to in vivo grown tissues. Moreover, it overcomes the limitation of conventional cell culture system that can't reflect in vivo systems. Finally, we believe that the proposed approach can be applied a new strategy for simple high-throughput screening and accurate evaluation of metal toxicity assay.

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.

Establishment and characterization of porcine mammary gland epithelial cell line using three dimensional culture system (3차원 배양 시스템을 이용한 돼지 유선 상피 세포 주 특성과 설정)

  • Chung, Hak-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.551-558
    • /
    • 2017
  • To study and validate tissue-specific promoters and vectors, it is important to develop cell culture systems that retain the tissue and species specificity. Such systems are attractive alternatives to transgenic animal models. This study established a line of porcine mammary gland epithelial cells (PMECs) from a primary culture based on the cellular morphology and mRNA levels of porcine beta-casein (CSN2). The selected PMECs were stained with the cytokeratin antibody, and were shown to express milk protein genes (CSN2, lactoferrin, and whey acidic protein). In addition, to confirm the acini structure of PMEC932-7 in 3D culture, live cells were stained with SYTO-13 dye, which binds to nucleic acid. The acini of these PMECs on matrigel were formed by the aggregation of peripheral cells and featured a hollow lumens. The system was demonstrated by testing the effects of the culture conditions to cell culture including cell density and matrigel methods of the PMECs. These results suggest that PMECs possess the genetic and structural features of mammary epithelial cells.

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

Mxi1 influences cyst formation in three-dimensional cell culture

  • Yook, Yeon-Joo;Yoo, Kyung-Hyun;Song, Seon-Ah;Seo, Min-Ji;Ko, Je-Yeong;Kim, Bo-Hye;Lee, Eun-Ji;Chang, Eun-Sun;Woo, Yu-Mi;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.189-193
    • /
    • 2012
  • Cyst formation is a major characteristic of ADPKD and is caused by the abnormal proliferation of epithelial cells. Renal cyst formation disrupts renal function and induces diverse complications. The mechanism of cyst formation is unclear. mIMCD-3 cells were established to develop simple epithelial cell cysts in 3-D culture. We confirmed previously that Mxi1 plays a role in cyst formation in Mxi1-deficient mice. Cysts in Mxi1 transfectanted cells were showed by collagen or mebiol gels in 3-D cell culture system. Causative genes of ADPKD were measured by q RT-PCR. Herein, Mxi1 transfectants rarely formed a simple epithelial cyst and induced cell death. Overexpression of Mxi1 resulted in a decrease in the PKD1, PKD2 and c-myc mRNA relating to the pathway of cyst formation. These data indicate that Mxi1 influences cyst formation of mIMCD-3 cells in 3-D culture and that Mxi1 may control the mechanism of renal cyst formation.

Establishment of Cell Suspension Cultures and Plant Regeneration in White Dandelion (Taraxacum coreanum NAKAI.)

  • Sun, Yan-Lin;Kim, Jae-Hak;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.24 no.3
    • /
    • pp.280-285
    • /
    • 2011
  • In this study, we established a novel somatic embryogenesis and plant regeneration system through cell suspension culture of white dandelion (Taraxacum coreanum NAKAI.). Embryogenic calli could be initiated from leaf and root explants of sterile seedlings on solid Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) after 3-week cultures. To proliferate embryogenic calli rapidly, cell suspension culture was performed with transferred to liquid MS medium with various combinations of plant growth regulators (PGRs) including 2,4-D, ${\alpha}$-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), $N^6$-benzylamino purine (BAP), thidiazuron (TDZ), and kinetin. During suspension cultures, embryogenic calli not only greatly proliferated, but shoot organogenesis also simultaneously occurred from the surface of somatic embryos. Among them, TDZ at lower concentration, 0.1 mg/L produced the highest efficiency of somatic embryo formation and shoot organogenesis. Rooting of embryogenic calli with adventitious shoots was done on solid MS medium containing 0.1 mg/L NAA and 0.3% activated carbon. Nearly 80% of embryogenic calli with shoot organogenesis could be rooted normal. Well-rooted plantlets were transferred into pots under a greenhouse condition, and plants derived from this system appeared phenotypically normal.