• Title/Summary/Keyword: 3D Structural Analysis

Search Result 1,458, Processing Time 0.028 seconds

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

Evaluation of the Dynamic Stability of Subway Bridge in the Applying B2S Track (B2S궤도 적용에 따른 철도교량의 동적안정성 검토)

  • Kong, Sun-Yong;Kim, Sang-Jin;Baik, Chan-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.20-27
    • /
    • 2009
  • This paper presents an analytic study for replacement of the ballast track in existing subway bridge by the Precast slab panel(B2S) track. To evaluate the dynamic responses on application of B2S track, the time history analysis with the 3D modeling. A total of two models, which were one ballast track bridge and B2S track bridge, were used in the FE analysis. The results of this study show that the dynamic displacement and acceleration of the B2S track bridge were significantly reduced for a higher train speed, compared to the ballast track bridge. Also, the replacement of the ballast track bridge in existing subway bridge by the B2S track increased the structural safety of bridge and ensured sufficient dynamic stability and serviceability. As a result, the servicing subway bridge with B2S track system has need of the reasonable measures which could be reducing the static and dynamic response and improving the performance.

  • PDF

The Composition of the Rare Earth Based Conversion Coating Formed on AZ91D Magnesium Alloy

  • Chang, Menglei;Wu, Jianfeng;Chen, Dongchu;Ye, Shulin
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • As structural materials, magnesium (Mg) alloys have been widely used in the fields of aviation, automobiles, optical instruments, and electronic products. There are few studies on the effect of coating conditions on the compositional variation during the formation process of the conversion coatings. Rare-earth based conversion coating on AZ91 magnesium alloy was prepared in ceric sulfate and hydrogen peroxide contained solution. The element composition and valence as well as their distribution in the coating were analyzed with energy dispersive X-ray spectroscopy (EDS), Electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS). The effect of treating process on the element composition were also studied. It was found that the conversion coating surface consists of Mg, Al, O, Ce, and the weight content of Ce in the coating was affected by the treating solution concentration and immersion time; the Ce element was distributed in the coating non-uniformly and existed in the form of $Ce^{+3}$ and $Ce^{+4}$, while the O element existed in the form of $OH^-$, $O^{2-}$, $H_2O$. Based on microscopic analysis results, the electrochemical deposition mechanism on the micro-anode and micro-cathode in the process of the coating growth was suggested.

Design and Analysis of Swingarm Type Rotary Actuator for Micro ODD (초소형 광디스크 드라이브용 스윙암 방식 로터리 엑츄에이터 설계 및 분석)

  • 김동욱;홍어진;박노철;박영필;김수경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.780-785
    • /
    • 2003
  • Recently the trends in information storage devices need small size, mobility, high capacity, and low power consumption etc. To satisfy those, the development of high performance actuator is an important issue. Compared with general linear actuator for optical disk drive, swingarm type rotary actuator is suitable to design in small form factor and has fast access time for random access. Swingarm actuator is designed considering the structural problem and the actuating force of VCM(Voice Coil Motor). The increase of mass caused by optical components makes vibration problems of swing-arm, therefore resonance frequency should be increased and inertia has to be reduced. ANSYS FEM tool is employed in optimizing swingarm. The VCM is designed using 3-D electro-magnetic analysis, and parameters of magnetic circuit are determined to matte large flux density. The large flux density enables to achieve low power consumption. VCM holder is designed to get the mass balance of total actuator and this balance reduces the magnitude of critical mode relative to pivot bearing, It is expected that swingarm type rotary actuator designed by this method is available to variable type of micro optical disk drives.

  • PDF

Application of Energy-Dissipating Sacrificial Device(EDSD) for Enhancing Seismic Performance of Bridges (교량의 내진성능 향상을 위한 희생부재형 에너지소산장치(EDSD)의 적용에 관한 연구)

  • Kim, Sang-Hyo;Cho, Kwang-Yil;Kim, Hae-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.445-452
    • /
    • 2006
  • A new Energy-Dissipating Sacrificial Device(EDSD) is proposed, which can effectively dissipate the energy stored in the structures during seismic actions. A mathematical 3-D bridge models and analysis techniques are developed to represent the non-linear behavior of the EDSD, various seismic responses of a sample bridge with the EDSD are analyzed in terms of energy, member forces and deformation using the developed analysis method. And the EDSD is tested and certified it's behavior and stability to apply on exiting bridges. The EDSD can be able to dissipate a large amount of energy and therefore it can prevent the pier's excessive forces under seismic excitations and EDSD and its connected members are also stable. Additionally, the method and guidelines of an optimum EDSD design are proposed in terms of installation method and decision of number of EDSD. The Proposed EDSD under seismic excitations can significantly decrease the excessive storing energy in the bridge structures and reduce the relative displacements of each superstructure to the ground. The EDSD is also found to function as a structural fuse under strong ground motions, sacrificing itself to absorb the excessive energy. Consequently, economical enhancement of the seismic performance of bridges can be achieved by employing the newly developed energy dissipation sacrificial device(EDSD).

  • PDF

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM

  • Mohammad Sadegh Tayebi;Sattar Jedari Salami;Majid Tavakolian
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.445-459
    • /
    • 2023
  • The current investigation is the first endeavor to apply the full layerwise finite element method (FEM) in free vibration analysis of functionally graded (FG) composite plates reinforced with graphene nanoplatelets (GPLs) in thermal environment. Unlike the equivalent single-layer (ESL) theories, the layerwise FEM focuses on all three-dimensional (3D) effects. The GPLs weight fraction is presumed invariable in each layer but varies through the plate thickness in a layerwise model. The modified Halpin-Tsai model is employed to acquire the effective Young's modulus. The rule of mixtures is applied to specify the effective Poisson's ratio and mass density. First, the current method is validated by comparing the numerical results with those stated in the available works. Next, a thorough numerical study is performed to examine the influence of various factors involving the pattern of distribution, weight fraction, geometry, and size of GPLs, together with the thickness-to-span ratio, thermal environment, and boundary conditions of the plate, on its free vibration behaviors. Numerical results demonstrate that employing a small percentage of GPL as reinforcement considerably grows the natural frequencies of the pure epoxy. Also, distributing more square-shaped GPLs, involving a smaller amount of graphene layers, and vicinity to the upper and lower surfaces make it the most efficient method to enhance the free vibration behaviors of the plate.

Finite element analysis and theoretical modeling of GFRP-reinforced concrete compressive components having waste tire rubber aggregates

  • Mohamed Hechmi El Ouni;Ali Raza
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.57-76
    • /
    • 2024
  • The management of waste tire rubber has become a pressing environmental and health issue, requiring sustainable solutions to mitigate fire hazards and conserve natural resources. The performance of waste materials in structural components needs to be investigated to fabricate sustainable structures. This study aims to investigate the behavior of glass fiber reinforced polymer (GFRP) reinforced rubberized concrete (GRRC) compressive components under compressive loads. Nine GRRC circular compressive components, varying in longitudinal and transverse reinforcement ratios, were constructed. A 3D nonlinear finite element model (FEM) was proposed by means of the ABAQUS software to simulate the behavior of the GRRC compressive components. A comprehensive parametric analysis was conducted to assess the impact of different parameters on the performance of GRRC compressive components. The experimental findings demonstrated that reducing the spacing of GFRP stirrups enhanced the ductility of GRRC compressive components, while the addition of rubberized concrete further improved their ductility. Failure in GRRC compressive components occurred in a compressive columnar manner, characterized by vertical cracks and increased deformability. The finite element simulations closely matched the experimental results. The proposed empirical model, based on 600 test samples and considering the lateral confinement effect of FRP stirrups, demonstrated higher accuracy (R2 = 0.835, MSE = 171.296, MAE = 203.549, RMSE = 195.438) than previous models.

A Study on Innovation Capability and Business Performance: Multi-Group Analysis by Company Location (혁신역량과 경영성과에 관한 연구: 기업 소재지별 다중집단분석)

  • Choi, Kyu-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.703-722
    • /
    • 2022
  • The concentration of local businesses in the capital region promotes a decrease in the local population and polarization between the capital region and non-capital regions. It affects the competitiveness of local industries and creates a vicious cycle throughout the local economy, society and culture. Therefore, this study classified the companies in the capital region and non-capital regions by group and examined the effect of the innovation capability factors of companies on the creation of business performance. We analyzed the effects of R&D capabilities, which are elements of innovation capability, and open innovation and convergence capabilities on business performance. Smart PLS 3.0 was used for analysis including direct and indirect mediating and moderating effects, multi-group analysis, and structural equation model analysis. As a result, R&D capability did not have a significant effect on business performance, but it has a positive influence towards business performance through convergence capability and open innovation. However, the effectiveness of open innovation in non-capital regions and convergence capabilities in capital region were not statistically significant. In particular, in terms of open innovation, as the difference between groups is statistically clear, follow-up measures are suggested especially in non-capital regions.