Browse > Article
http://dx.doi.org/10.12989/scs.2021.38.6.657

Designing method for fire safety of steel box bridge girders  

Li, Xuyang (School of Highway, Chang'an University)
Zhang, Gang (School of Highway, Chang'an University)
Kodur, Venkatesh (Department of Civil and Environmental Engineering, Michigan State University)
He, Shuanhai (School of Highway, Chang'an University)
Huang, Qiao (School of Transportation, Southeast University)
Publication Information
Steel and Composite Structures / v.38, no.6, 2021 , pp. 657-670 More about this Journal
Abstract
This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.
Keywords
steel box bridge girders; bridge fires; finite element model; fire performance; fire-resistance design;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Paya-Zaforteza, I. and Garlock, M.E.M. (2012), "A numerical investigation on the fire response of a steel girder bridge", J. Constr. Steel. Res., 75, 93-103. http://doi.org/10.1016/j.jcsr.2012.03.012.   DOI
2 Song, C.J., Zhang, G., Hou, W. and He, S.H. (2020), "Performance of prestressed concrete box bridge girders under hydrocarbon fire exposure", Adv. Struct. Eng., 23(8), 1521-1533. https://doi.org/10.1177/1369433219898102.   DOI
3 Wang, Y.C. and Yin, Y.Z. (2006), "A simplified analysis of catenary action in steel beams in fire and implications on fire resistant design", Steel Compos. Struct., 6(5), 367-386. https://doi.org/10.12989/scs.2006.6.5.367.   DOI
4 Ye, Z.N., Jiang S.C., Heidarpour, A., Li, Y.C. and Li, G.Q. (2019), "Experimental study on cyclically-damaged steel-concrete composite joints subjected to fire", Steel Compos. Struct., 30(4), 351-364. https://doi.org/10.12989/scs.2019.30.4.351.   DOI
5 Yu, H.X. and Liew, J.Y.R. (2004), "Moment curvature method for fire safety design of steel beams", Steel Compos. Struct., 4(3), 227-246. https://doi.org/10.12989/scs.2004.4.3.227.   DOI
6 Zhang, G., Kodur, V.K.R., Song, C.J., He, S.H. and Huang, Q. (2020), "A numerical model for evaluating fire performance of composite box bridge girders", J. Constr. Steel. Res., 165, 105823. https://doi.org/10.1016/j.jcsr.2019.105823.   DOI
7 Zhang, G., Kodur, V.K.R., Yao, W.F. and Huang, Q. (2019), "Behavior of composite box bridge girders under localized fire exposure conditions", Struct. Eng. Mech., 69(2), 193-204. https://doi.org/10.12989/sem.2019.69.2.193.   DOI
8 Zhang, G., Song, C.J., Li, X.Y., He, S.H. and Huang, Q. (2021), "Fire performance of continuous steel-concrete composite bridge girders." KSCE J. Civ. Eng., 25(3), 973-984. https://doi.org/10.1007/s12205-021-0985-x.   DOI
9 Kodur, V.K.R. and Naser, M.Z. (2014), "Effect of shear on fire response of steel beams", J. Constr. Steel. Res., 97, 48-58. http://doi.org/10.1016/j.jcsr.2014.01.018.   DOI
10 Kodur, V.K.R. and Naser, M.Z. (2013), "Importance factor for design of bridges against fire hazard", Eng. Struct., 54, 207-220. http:// doi.org/10.1016/j.engstruct.2013.03.048.   DOI
11 Kodur, V.K.R. and Naser, M.Z. (2015), "Effect of local instability on capacity of steel beams exposed to fire", J. Constr. Steel. Res., 111, 31-42. http://doi.org/10.1016/j.jcsr.2015.03.015.   DOI
12 Kodur, V.K.R., AZiZ, E.M. and Dwaikat, M.M.S. (2012), "Evaluating fire resistance of steel girders in bridges", J. Bridge Eng., 18(7), 633-643. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000412.   DOI
13 Zhang, G., Zhu M.C., Kodur, V.K.R. and Li, G.Q. (2017), "Behavior of welded connections after exposure to elevated temperature", J. Constr. Steel. Res., 130, 88-95. https://doi.org/10.1016/j.jcsr.2016.12.004.   DOI
14 ISO 834 (1999), Fire Resistance Tests-Elements of Building Construction. Part 1: General requirements, International Standard Organization; Genva, Switzerland.
15 JTG D60-2015 (2015), General Specifications for Design of Highway Bridges and Culverts, Ministry of Transport of the People's Republic of China; Beijing, China.
16 Kodur, V.K.R. and Dwaikat, M.M.S. (2010), "Effect of high temperature creep on the fire response of restrained steel beams", Mater. Struct., 43(10), 1327-1341. http://doi.org/10.1617/s11527-010-9583-y.   DOI
17 Li, G.Q., Ding, J. and Sakumoto, Y. (2005), "A practical approach for fire safety design of fire-resistant steel members", Steel Compos. Struct., 5(1), 71-86. https://doi.org/10.12989/scs.2005.5.1.071.   DOI
18 Kodur, V.K.R. and Naser, M.Z. (2018), "Approach for shear capacity evaluation of fire exposed steel and composite beams", J. Constr. Steel. Res., 141, 91-103. https://doi.org/10.1016/j.jcsr.2017.11.011.   DOI
19 Kodur, V.K.R. and Naser, M.Z. (2019), "Designing steel bridges for fire safety", J. Constr. Steel. Res., 156, 46-53. https://doi.org/10.1016/j.jcsr.2019.01.020.   DOI
20 Kodur, V.K.R., Naser, M.Z., Pakala, P. and Varma, A. (2013), "Modeling the response of composite beam-slab assemblies exposed to fire", J. Constr. Steel. Res., 80, 163-173. http://doi.org/10.1016/j.jcsr.2012.09.005.   DOI
21 Naser, M.Z. and Kodur, V.K.R. (2016), "Factors governing onset of local instabilities in fire exposed steel beams", Thin-Walled Struct., 98, 48-57. http://doi.org/10.1016/j.tws.2015.04.005.   DOI
22 Kodur, V.K.R., Dwaikat, M.M.S. and Fike, R. (2010), "High-temperature properties of steel for fire resistance modeling of structures", J. Mater. Civ. Eng., 22(5), 423-434. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000041.   DOI
23 Naser, M.Z. and Kodur, V.K.R. (2017), "Comparative fire behavior of composite girders under flexural and shear loading", Thin-Walled Struct., 116, 82-90. http://doi.org/10.1016/j.tws.2017.03.003.   DOI
24 Nguyen, T.T., Tan, K.H. and Burgess, I.W. (2015), "Behaviour of composite slab-beam systems at elevated temperatures: Experimental and numerical investigation", Eng. Struct., 82, 199-213. http://doi.org/10.1016/j.engstruct.2014.10.044.   DOI
25 ASTM E119 (2012), Standard test methods for fire tests of building construction and materials, American National Standards Institute; U.S.A.
26 Ahn, J.K., Lee, C.H. and Park, H.N. (2013), "Prediction of fire resistance of steel beams with considering structural and thermal parameters", Fire Saf. J., 56, 65-73. http://doi.org/10.1016/j.firesaf.2013.01.002.   DOI
27 Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A. and Rinaudo, P. (2017), "Valencia bridge fire tests: Experimental study of a composite bridge under fire", J. Constr. Steel. Res., 138, 538-554. http://doi.org/10.1016/j.jcsr.2017.08.008.   DOI
28 ANSYS (2013), ANSYS Metaphysics (Version 15.0), ANSYS Inc., Canonsburg, Pennsylvania, U.S.A.
29 Aziz, E.M. and Kodur, V.K.R. (2013), "An approach for evaluating the residual strength of fire exposed bridge girders", J. Constr. Steel. Res., 88, 34-42. http://doi.org/10.1016/j.jcsr.2013.04.007.   DOI
30 Aziz, E.M., Kodur, V.K.R., Glassman, J.D. and Garlock, M.E.M. (2015), "Behavior of steel bridge girders under fire conditions", J. Constr. Steel. Res., 106, 11-22. http://doi.org/10.1016/j.jcsr.2014.12.001.   DOI
31 Chan, S.L. and Chan, B.H.M. (2001), "Refined plastic hinge analysis of steel frames under fire", Steel Compos. Struct., 1(1), 111-130. https://doi.org/10.12989/scs.2001.1.1.111.   DOI
32 Dwaikat, M.M.S. and Kodur, V.K.R. (2011), "Engineering approach for predicting fire response of restrained steel beams", J. Eng. Mech., 137(7), 447-461. http://doi.org/10.1061/(ASCE)EM.1943-7889.0000244.   DOI
33 Dwaikat, M.M.S. and Kodur, V.K.R. (2011), "A performance based methodology for fire design of restrained steel beams", J. Constr. Steel. Res., 67(3), 510-524. http://doi.org/10.1016/j.jcsr.2010.09.004.   DOI
34 Garlock, M.E.M., Paya-Zaforteza,I., Kodur, V.K.R. and Gu, L. (2012), "Fire hazard in bridges: Review, assessment and repair strategies", Eng. Struct., 35, 89-98. https://doi.org/10.1016/j.engstruct.2011.11.002.   DOI
35 Eurocode 1 (2002), Actions on structures. Part 1-2: General action-Action on structures exposed to fire, European Committee for Standardization; Brussels, Belgium.
36 Eurocode 2 (2004), Design of concrete structures. Part 1-2: General rules-Structural fire design, European Committee for Standardization; Brussels, Belgium.
37 Eurocode 3 (2005), Design of steel structures. Part 1-2: General rules-Structural fire design, European Committee for Standardization; Brussels, Belgium.
38 Glassman, J.D., Garlock, M.E.M., Aziz, E.M. and Kodur, V.K.R. (2016), "Modeling parameters for predicting the postbuckling shear strength of steel plate girders", J. Constr. Steel. Res., 121, 136-143. http://doi.org/10.1016/j.jcsr.2016.01.004.   DOI