• 제목/요약/키워드: 3D Scan

검색결과 876건 처리시간 0.031초

선택적 레이저 용융공정으로 제조된 Al-Si-Mg 합금의 열처리에 따른 미세조직 및 특성평가 (Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment)

  • 이기승;엄영성;김경태;김병기;유지훈
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.138-145
    • /
    • 2019
  • In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/s at the laser power of 180 and 270 W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180 W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.

PERFORMANCE TEST FOR A PDS MICRODENSITOMETER MODEL 1010GMS

  • Hong, S.S.;Paek, W.G.;Lee, S.G.
    • 천문학회지
    • /
    • 제25권1호
    • /
    • pp.23-46
    • /
    • 1992
  • The electrical, mechanical and optical capabilities have been tested of the microdensitometer PDS 1010GMS at the Korea Astronomy Observatory. The highest stage of scan speed 255 csu (conventional speed unit) is measured to be 47 mm/s. At this speed the position is displaced by $4{\mu}m$ to the direction of scanning and the density is underestimated by $0.4{\sim}0.7D$. Standard deviation in the measured density is proportional to $A^{-0.46}$, where A is the area of scan aperture. The accuracy of position repeatability is ${\pm}1{\mu}m$, and that of density repeatability is ${\pm}(0.003{\sim}0.03)D$. Callier coefficient is determined to be 1.37; the semispecular density is directly proportional to the diffuse density up to 3.5D. Because the logarithmic amplifier has a finite response time, the densities measured at high scan speeds are underestimated to the degree that speeds higher than 200 csu are inadequate for making an accurate astronomical photometry. After power is on, an about 5 hour period of warming is required to stabilize the system electrically and mechanically as well. On the basis of this performance test, we have determined the followings as the optimum scan parameters for the astronomical photometry: For the scan aperture $10\;\sim\;20{\mu}m$ is optimal, and for the scan speed. $20\;{\sim}\;50$ csu is appropriate. These parameter values are chosen in such a way that they may keep the density repeatability within ${\pm}0.01D$, the position displacement under $1{\mu}m$, and the density underestimation below 0.1D even in high density regions.

  • PDF

단속형 가변적층쾌속조형공정을 이용한 3차원 스캔데이터로부터 3차원 시작품의 쾌속 제작 (Rapid Manufacturing of 3D Prototype from 3D scan data using VLM-ST)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.536-539
    • /
    • 2002
  • The reverse engineering (RE) technology can quickly generate 3D point cloud data of an object by capturing the surface of a model using a 3D scanner. In the rapid prototyping (RP) technology, prototypes are rapidly produced from 3D CAD models in a layer-by-layer additive basis. In this paper, a physical human head shape is duplicated using a new RP process, the Transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), after the point cloud data of a human head shape measured from 3D SNX scanner are converted to STL file. From the duplicated human head shape, it has been shown that the VLM-ST process in connection with the 3D scanner is a fast and efficient process in that shapes with free surface, such as the human head shape, can be duplicated with ease. Considering the measurement time and the shape duplication time, the use of 3D SNX scanner and the VLM-ST process is expected to reduce the lead-time fur the development of new products in comparison with the other existing RE-RP connected manufacturing systems.

  • PDF

3D SCAN DATA 를 이용한 직접유한요소모델 생성 (Direct Finite Element Model Generation using 3 Dimensional Scan Data)

  • 이수용;김성진;정재영;박종식;이성범
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

통상적인 총의치 제작과정에서의 스캔 정보를 활용한 three-dimensional printed complete denture의 제작 (Three-dimensional printed complete denture fabrication using the scan data from the conventional denture-making process)

  • 김현민;김종진;이주희;차현석;백진
    • 구강회복응용과학지
    • /
    • 제36권3호
    • /
    • pp.196-202
    • /
    • 2020
  • 최근 three-dimensional (3D) printed denture가 완전 무치악 환자의 보철치료 시 선택할 수 있는 하나의 제작 방법으로 주목을 받고 있다. 그러나 아직까지 건강보험 총의치가 3D 프린팅 활용을 지원하지 않기 때문에 전통적인 방식만을 사용해야만 하며, 재제작이 필요할 경우 처음부터 제작과정을 반복해야 한다는 단점이 있다. 그러나 통상적인 의치 제작 과정 중 특정 단계들의 정보를 디지털 스캔하여 저장할 수 있고, 본 증례에서는 이 정보를 활용하여 통상적인 방식으로 제작된 첫번째 의치의 문제점을 보완한 새로운 의치를 3D 프린팅으로 완성하였다.

Verification of the Accuracy of Photogrammetry in 3D Full-Body Scanning -A Case Study for Apparel Applications-

  • Eun Joo Ryu;Lu Zhang;Hwa Kyung Song
    • 한국의류학회지
    • /
    • 제47권1호
    • /
    • pp.137-151
    • /
    • 2023
  • Stationary 3D whole-body scanners generally require 5 to 20 seconds of scanning time and cannot effectively detect armpit and crotch areas. Therefore, this study aimed to analyze the accuracy of a photogrammetric technique using a multi-camera system. First, dimensional accuracy was analyzed using a mannequin scan, comparing the differences between the scan-derived measurements and the direct measurements, with an allowable tolerance of ISO 20685-1:2018. Only 2 of 59 measurement items (ankle height and upper arm circumference, specifically) exceeded the ISO 20685-1:2018 criteria. When compared with the results of the eight stationary whole-body scanners assessed by the literature, the photogrammetric technique was found to have the advantage of scanning the top of the head, armpit, and crotch areas clearly. Second, this study found the photogrammetric technique is suitable for obtaining the body scans because it can minimize the perform scanning, resulting in a reduction of measurement errors due to breathing and uncontrolled movements. The error rate of the photogrammetry method was much lower than that of stationary 3D whole-body scanners.

노년 여성 3-D 입체형상 데이터를 활용한 상반신 원형 설계방법 연구 (Drafting Method of Upper Bodice Pattern using 3-D Anthropometric Data for Elderly Women)

  • 서추연;박순지
    • 한국의류학회지
    • /
    • 제32권5호
    • /
    • pp.846-858
    • /
    • 2008
  • This study was designed to propose a method to draft bodice block pattern from 3D body scan data. Subjects were ten elderly women in their 60's, who wear basic size(B: 94cm, W: 82cm) garment. Scanning was done using 3D whole body scanner(WB4, Cyberware). Measurements for 3D data and cross section were attained using Auto CAD, by which a upper bodice pattern for elderly women was drawn on the basis of short measured method. The results are as following: As for most items, no significant differences were shown between measurements from Martin's anthropometry and those from 3D scan data, suggesting measurement from 3D scan data could be used to draft a pattern. The drafting equations acquired were as follows; width of pattern=B/2+5.5, width of waist=W/2+3.5cm, dart amount=8cm. Dart distributions were 23%(B.P.) : 20%(front armpit) : 17%(side seam) : 18%(back armpit) : 15%(back protruded point) : 7% (center back line). Through wearing test using 5-point Likert scale, resultant pattern was evaluated as appropriate for elderly women's pattern to get over 4 point. As a result, it might be said that 3D scanning application is effective for elderly women in that it doesn't take time so much as Martin's anthropometry and that their body shape vary compared with those of young women.

국산 치과용 구강스캐너(e-scanner)와 모델스캐너의 정확도 비교 (Comparison of the accuracy of domestic dental intra-oral scanner(e-scanner) and model scanner)

  • 김부섭;김정호
    • 대한치과기공학회지
    • /
    • 제41권2호
    • /
    • pp.53-61
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the discrepancy of scan process in dental intra oral scanner by comparing model scanner and anticipate possibility to introduce intra oral scan technique. Methods: 3D superimposition test was conducted to compare the scan discrepancy. The scanners used in this study are the e-oral scanner, the D750 model scanner, and the high precision CMM(3D Coordinate Measuring Machine). The standard of accuracy verification is ISO 5725-1; trueness and precision. Master model was manufactured by dental stone and scanned 5 times by intra oral, model scanner. Reference data was scanned 5 times by high accuracy CMM to evaluate the trueness. Results: Trueness of D750 scanner were $7.4{\mu}m$ $5.1{\mu}m$ $6.8{\mu}m$ at an abutment, an occluasal, a specific area. and trueness of e-scanner were $20.2{\mu}m$ $27.4{\mu}m$ $37.8{\mu}m$ at an abutment, an occluasal, a specific area. Precision of D750 scanner was $7.04{\mu}m$, e-scanner was $15.95{\mu}m$. Conclusion: When conducting in vitro test, The mean difference of trueness between e-scanner and D750 were $12.8{\mu}m$ at an abutment area, $22.3{\mu}m$ at an occlusal area, $31.0{\mu}m$ at a specific area and $8.91{\mu}m$ in precision. The scan discrepancies are within the range of clinical acceptance.

인체 형상 데이터를 이용한 실버 여성 3차원 체형 연구 (Body Shapes of Aged Women Applying 3D Body Scan Data)

  • 김수아;최혜선
    • 복식문화연구
    • /
    • 제17권6호
    • /
    • pp.1099-1111
    • /
    • 2009
  • The purpose of this study is to classify body shapes of aged women by using 3D body scan data. For the body shape analysis and classification, 3D body scan data of 270 aged women were used, and 16 main measurements consisting of a human body were used to conduct factor analysis, cluster analysis and discriminant analysis. The analysis were performed on all 'the method using the absolute value', 'the method using index of height and weight', and 'the method using index of height', and according to the classification results, the method which categorizes body shapes best in terms of their shapes was adopted. As the factor analysis result using the numerical value of height to categorize the body shapes of the aged women, factor 1 was the thickness and width for the height, factor 2 was the height of the upper part of the body for the height, factor 3 was the height of hips for the height, and factor 4 was the height of belly for the height. When the body shapes were categorized with the deducted factors as variables, they were divided into two types. Type 1 was a short and fat body shape($\blacksquare$ type) and 55.6% of the subjects were of this type. Type 2 was for the body shape whose vertical height, including weight, was long but all kinds of width and thickness were small, that is, tall and thin body shape($\blacksquare$ type), and 44.4% of the aged women were in this case.

  • PDF