DOI QR코드

DOI QR Code

Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment

선택적 레이저 용융공정으로 제조된 Al-Si-Mg 합금의 열처리에 따른 미세조직 및 특성평가

  • Lee, Gi Seung (3D Printing Materials Center, Korea Institute of Materials Science) ;
  • Eom, Yeong Seong (3D Printing Materials Center, Korea Institute of Materials Science) ;
  • Kim, Kyung Tae (3D Printing Materials Center, Korea Institute of Materials Science) ;
  • Kim, Byoung Kee (Department of Materials Science and Engineering, University of Ulsan) ;
  • Yu, Ji Hun (3D Printing Materials Center, Korea Institute of Materials Science)
  • 이기승 (한국기계연구원 부설 재료연구소 3D프린팅소재연구센터) ;
  • 엄영성 (한국기계연구원 부설 재료연구소 3D프린팅소재연구센터) ;
  • 김경태 (한국기계연구원 부설 재료연구소 3D프린팅소재연구센터) ;
  • 김병기 (울산대학교 첨단소재공학부) ;
  • 유지훈 (한국기계연구원 부설 재료연구소 3D프린팅소재연구센터)
  • Received : 2019.04.19
  • Accepted : 2019.04.27
  • Published : 2019.04.28

Abstract

In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/s at the laser power of 180 and 270 W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180 W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.

Keywords

References

  1. G. H. Shin, J. P. Choi, K. T. Kim, B. K. Kim and J. H. Yu: J. Korean Powder Metall. Inst., 24 (2017) 210. https://doi.org/10.4150/KPMI.2017.24.3.210
  2. A. Ambrosi and M. Pumera: Chem. Soc. Rev., 45 (2016) 2740. https://doi.org/10.1039/C5CS00714C
  3. L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck and J. P Kruth: Acta Mater., 58 (2010) 3303 . https://doi.org/10.1016/j.actamat.2010.02.004
  4. H. Attar, K. G. Prashanth, A. K. Chaubey, M. Calin, L. C. Zhang, S. Scudino and J. Eckert : Mater. Lett., 142 (2015) 38. https://doi.org/10.1016/j.matlet.2014.11.156
  5. J. Suryawanshi, K. G. Prashanth, S. Scudino, J. Eckert, O. Prakash and U. Ramamurty : Acta Mater., 115 (2016) 285. https://doi.org/10.1016/j.actamat.2016.06.009
  6. P. Nandwana, A. M. Elliott, D. Siddel, A. Meriman, W. H. Peter and S. S. Babu: Curr, Opin, Soild State Mater. Sci., 21 (2017) 207. https://doi.org/10.1016/j.cossms.2016.12.002
  7. H. T. Kim and S. C. Kil : JWJ., 34 (2016) 62.
  8. N. Read, W. Wang, K. Essa and M. M. Attallah: Mater. Des., 65 (2015) 417. https://doi.org/10.1016/j.matdes.2014.09.044
  9. E. Louvis, P. Fox and C. J. Sutcliffe: J. Mater. Process. Technol., 211 (2011) 275. https://doi.org/10.1016/j.jmatprotec.2010.09.019
  10. N. T. Aboulkhair, N. M. Everitt, I. Ashcroft and C. Tuck: Addit. Manuf., 1-4 (2014) 77. https://doi.org/10.1016/j.addma.2014.08.001
  11. K. H. Lee, Y. N. Kwon and S. H. Lee : J. Kor. Inst. Met & Mater., 45 (2007) 18.
  12. K. Kempen, L.Thijs, J. V. Humbeeck and J.-P. Kruth: Physics Procedia, 39 (2012) 439. https://doi.org/10.1016/j.phpro.2012.10.059
  13. N. O. Larrosa, W. Wang, N. Read, M. H. Loretto, C. Evans, J. Carr, U. Tradowsky, M. M. Attallah, and P. J. Withers : Theor. Appl. Fract. Mech., 98 (2018) 123. https://doi.org/10.1016/j.tafmec.2018.09.011