• Title/Summary/Keyword: 3D Object

Search Result 2,107, Processing Time 0.031 seconds

Three Dimensional Geometric Feature Detection Using Computer Vision System and Laser Structured Light (컴퓨터 시각과 레이저 구조광을 이용한 물체의 3차원 정보 추출)

  • Hwang, H.;Chang, Y.C.;Im, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.381-390
    • /
    • 1998
  • An algorithm to extract the 3-D geometric information of a static object was developed using a set of 2-D computer vision system and a laser structured lighting device. As a structured light pattern, multi-parallel lines were used in the study. The proposed algorithm was composed of three stages. The camera calibration, which determined a coordinate transformation between the image plane and the real 3-D world, was performed using known 6 pairs of points at the first stage. Then, utilizing the shifting phenomena of the projected laser beam on an object, the height of the object was computed at the second stage. Finally, using the height information of the 2-D image point, the corresponding 3-D information was computed using results of the camera calibration. For arbitrary geometric objects, the maximum error of the extracted 3-D feature using the proposed algorithm was less than 1~2mm. The results showed that the proposed algorithm was accurate for 3-D geometric feature detection of an object.

  • PDF

Three-Dimensional Object Recognition System Using Shape from Stereo Algorithm (스테레오 기법을 적용한 3차원 물체인식 시스템)

  • Heo, Yun-Seok;Hong, Bong-Hwa
    • The Journal of Information Technology
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • The depth information of 3D image lost by projecting 3D-object to 2D-screen for earning image. If depth information is restored and is used to recognize 3D-object, we can make the more effective recognition system. We often use shape from stereo algorithm in order to restore this information. In this paper, we suggest 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In this system, we use the moving vector of object to reduce matching time and In second matching step, the unknown input image is compared with the reference images, which is made with octree codes. Octree codes are used in volume-based representation of a three dimensional object. The result of simulation show that the proposed 3-D object recognition system provides satisfactory performance.

  • PDF

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.

Design of Interface between 3D Object Model and Structure Analysis Program (3D 객체 모델과 구조해석 프로그램의 인터페이스 설계)

  • Park, Jae-Geun;Kim, Min-Hee;Lee, Kwang-Myong;Choi, Jung-Ho;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.247-252
    • /
    • 2008
  • Recently, the virtual construction system in which project participants efficiently share and control the information throughout the life-cycle of construction project using 3D object models is being developed all over the world. In this paper, a design of interface between 3D object model of structures and structural analysis system that is essential for the analysis and design of civil structures in the virtual space is treated. The relation parametric modeling technique that is needed to make the 3D object models and the construction method of product breakdown structure(PBS) that considers the several parameters for the structural analysis are presented. PBS is built so that it is possible to extract needed attribute information from 3D object model and to apply it to the structural analysis. Design methodology for interface program is proposed that several numerical values determined by the cooperative work same as structural analysis are delivered to 3D object models without additional work. An interface program between 3D object models and structural analysis system developed based on the proposed method would be effectively used to develop virtual construction system.

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.

Octree model based fast three-dimensional object recognition (Octree 모델에 근거한 고속 3차원 물체 인식)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.84-101
    • /
    • 1997
  • Inferring and recognizing 3D objects form a 2D occuluded image has been an important research area of computer vision. The octree model, a hierarchical volume description of 3D objects, may be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition. We present a fast algorithm of finding the 4 pairs of feature points to estimate the viewing direction. The method is based on matching the object contour to the reference occuluded shapes of 49 viewing directions. The initially best matched viewing direction is calibrated by searching for the 4 pairs of feature points between the input image and the image projected along the estimated viewing direction. Then the input shape is recognized by matching to the projectd shape. The computational complexity of the proposed method is shown to be O(n$^{2}$) in the worst case, and that of the simple combinatorial method is O(m$^{4}$.n$^{4}$) where m and n denote the number of feature points of the 3D model object and the 2D object respectively.

  • PDF

Measurement of 3D Object Size Using 6 Axis Sensor (6축 센서를 이용한 3D형상의 면적 산출 방법)

  • Choi, Kyung-Won;Kim, Yung-Jun;Choi, Jong-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.325-327
    • /
    • 2007
  • We report a simple area measurement device for 3 dimensional object using 3 degree of freedom sensor. The surface of 3D object can be divided into a number of triangles, and the surface area of 3D object could be measured by the sum of the divided triangle area. We applied 6DOF sensor to measure the coordinate of triangle vertex, and calculated each triangle area on the surface of 3D object. The many we divide the area to triangles, the correct we will get the result. This method shows 7.78% in error on the measurement of 3 dimensional object area.

  • PDF

Robust 3D Object Detection through Distance based Adaptive Thresholding (거리 기반 적응형 임계값을 활용한 강건한 3차원 물체 탐지)

  • Eunho Lee;Minwoo Jung;Jongho Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Ensuring robust 3D object detection is a core challenge for autonomous driving systems operating in urban environments. To tackle this issue, various 3D representation, including point cloud, voxels, and pillars, have been widely adopted, making use of LiDAR, Camera, and Radar sensors. These representations improved 3D object detection performance, but real-world urban scenarios with unexpected situations can still lead to numerous false positives, posing a challenge for robust 3D models. This paper presents a post-processing algorithm that dynamically adjusts object detection thresholds based on the distance from the ego-vehicle. While conventional perception algorithms typically employ a single threshold in post-processing, 3D models perform well in detecting nearby objects but may exhibit suboptimal performance for distant ones. The proposed algorithm tackles this issue by employing adaptive thresholds based on the distance from the ego-vehicle, minimizing false negatives and reducing false positives in the 3D model. The results show performance enhancements in the 3D model across a range of scenarios, encompassing not only typical urban road conditions but also scenarios involving adverse weather conditions.

Tracking of 2D or 3D Irregular Movement by a Family of Unscented Kalman Filters

  • Tao, Junli;Klette, Reinhard
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.307-314
    • /
    • 2012
  • This paper reports on the design of an object tracker that utilizes a family of unscented Kalman filters, one for each tracked object. This is a more efficient design than having one unscented Kalman filter for the family of all moving objects. The performance of the designed and implemented filter is demonstrated by using simulated movements, and also for object movements in 2D and 3D space.

CAD-Based 3-D Object Recognition Using Hough Transform (Hough 변환을 이용한 캐드 기반 삼차원 물체 인식)

  • Ja Seong Ku;Sang Uk Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1171-1180
    • /
    • 1995
  • In this paper, we present a 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In object modeling step, the features for recognition are extracted from the CAD models of objects to be recognized. Since the approach is based on the CAD models, the accuracy and flexibility are greatly improved. In matching stage, the sensed image is compared with the stored model, which is assumed to yield a distortion (location and orientation) in the 3-D Hough transform domain. The high dimensional (6-D) parameter space, which defines the distortion, is decomposed into the low dimensional space for an efficient recognition. At first we decompose the distortion parameter into the rotation parameter and the translation parameter, and the rotation parameter is further decomposed into the viewing direction and the rotational angle. Since we use the 3-D Hough transform domain of the input images directly, the sensitivity to the noise and the high computational complexity could be significantly alleviated. The results show that the proposed 3-D object recognition system provides a satisfactory performance on the real range images.

  • PDF